Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern, Dallas, TX 75390, USA.
Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA.
Curr Biol. 2022 Mar 28;32(6):1429-1438.e6. doi: 10.1016/j.cub.2022.03.017. Epub 2022 Mar 17.
Central pacemaker neurons regulate circadian rhythms and undergo diurnal variation in electrical activity in mammals and flies. Circadian variation in the intracellular chloride concentration of mammalian pacemaker neurons has been proposed to influence the response to GABAergic neurotransmission through GABA receptor chloride channels. However, results have been contradictory, and a recent study demonstrated circadian variation in pacemaker neuron chloride without an effect on GABA response. Therefore, whether and how intracellular chloride regulates circadian rhythms remains controversial. Here, we demonstrate a signaling role for intracellular chloride in the Drosophila small ventral lateral (sLN) pacemaker neurons. In control flies, intracellular chloride increases in sLNs over the course of the morning. Chloride transport through sodium-potassium-2-chloride (NKCC) and potassium-chloride (KCC) cotransporters is a major determinant of intracellular chloride concentrations.Drosophila melanogaster with loss-of-function mutations in the NKCC encoded by Ncc69 have abnormally low intracellular chloride 6 h after lights on, loss of morning anticipation, and a prolonged circadian period. Loss of kcc, which is expected to increase intracellular chloride, suppresses the long-period phenotype of Ncc69 mutant flies. Activation of a chloride-inhibited kinase cascade, consisting of WNK (with no lysine [K]) kinase and its downstream substrate, Fray, is necessary and sufficient to prolong period length. Fray activation of an inwardly rectifying potassium channel, Irk1, is also required for the long-period phenotype. These results indicate that the NKCC-dependent rise in intracellular chloride in Drosophila sLN pacemakers restrains WNK-Fray signaling and overactivation of an inwardly rectifying potassium channel to maintain normal circadian period length.
中央起搏器神经元调节昼夜节律,并在哺乳动物和果蝇中表现出电活动的日变化。哺乳动物起搏器神经元细胞内氯离子浓度的昼夜变化被认为通过 GABA 能神经递质传递的 GABA 受体氯离子通道影响反应。然而,结果一直存在矛盾,最近的一项研究表明,起搏器神经元氯离子的昼夜变化对 GABA 反应没有影响。因此,细胞内氯离子是否以及如何调节昼夜节律仍然存在争议。在这里,我们证明了细胞内氯离子在果蝇小腹外侧(sLN)起搏器神经元中的信号作用。在对照果蝇中,sLN 中的细胞内氯离子在上午的过程中增加。通过钠-钾-2-氯(NKCC)和钾-氯(KCC)共转运蛋白的氯离子转运是细胞内氯离子浓度的主要决定因素。果蝇 Ncc69 编码的 NKCC 功能丧失突变的果蝇,细胞内氯离子在光照后 6 小时异常低,失去早晨预期,昼夜周期延长。预计增加细胞内氯离子的 kcc 的缺失,抑制了 Ncc69 突变体果蝇的长周期表型。氯离子抑制的激酶级联的激活,由 WNK(无赖氨酸[K])激酶及其下游底物 Fray 组成,是延长周期长度所必需和充分的。Fray 激活内向整流钾通道 Irk1 也需要长周期表型。这些结果表明,果蝇 sLN 起搏器中 NKCC 依赖性的细胞内氯离子升高抑制了 WNK-Fray 信号传导,并过度激活了内向整流钾通道,以维持正常的昼夜周期长度。