Dimitri Alexander, Herbst Friederike, Fraietta Joseph A
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, South Pavilion Expansion (SPE), Room 9-104, 3400 Civic Center Blvd, Bldg. 421, Philadelphia, PA, 19104-5156, USA.
Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Mol Cancer. 2022 Mar 18;21(1):78. doi: 10.1186/s12943-022-01559-z.
Chimeric Antigen Receptor (CAR) T-cells represent a breakthrough in personalized cancer therapy. In this strategy, synthetic receptors comprised of antigen recognition, signaling, and costimulatory domains are used to reprogram T-cells to target tumor cells for destruction. Despite the success of this approach in refractory B-cell malignancies, optimal potency of CAR T-cell therapy for many other cancers, particularly solid tumors, has not been achieved. Factors such as T-cell exhaustion, lack of CAR T-cell persistence, cytokine-related toxicities, and bottlenecks in the manufacturing of autologous products have hampered the safety, effectiveness, and availability of this approach. With the ease and accessibility of CRISPR-Cas9-based gene editing, it is possible to address many of these limitations. Accordingly, current research efforts focus on precision engineering of CAR T-cells with conventional CRISPR-Cas9 systems or novel editors that can install desired genetic changes with or without introduction of a double-stranded break (DSB) into the genome. These tools and strategies can be directly applied to targeting negative regulators of T-cell function, directing therapeutic transgenes to specific genomic loci, and generating reproducibly safe and potent allogeneic universal CAR T-cell products for on-demand cancer immunotherapy. This review evaluates several of the ongoing and future directions of combining next-generation CRISPR-Cas9 gene editing with synthetic biology to optimize CAR T-cell therapy for future clinical trials toward the establishment of a new cancer treatment paradigm.
嵌合抗原受体(CAR)T细胞代表了个性化癌症治疗的一项突破。在这一策略中,由抗原识别、信号传导和共刺激结构域组成的合成受体被用于对T细胞进行重编程,使其靶向肿瘤细胞以将其破坏。尽管这种方法在难治性B细胞恶性肿瘤中取得了成功,但对于许多其他癌症,尤其是实体瘤,CAR T细胞疗法的最佳效力尚未实现。诸如T细胞耗竭、CAR T细胞持久性不足、细胞因子相关毒性以及自体产品制造中的瓶颈等因素,已经阻碍了这种方法的安全性、有效性和可及性。随着基于CRISPR-Cas9的基因编辑变得简便且易于操作,有可能解决其中许多限制。因此,当前的研究工作集中在利用传统的CRISPR-Cas9系统或新型编辑器对CAR T细胞进行精准工程改造,这些编辑器能够在基因组中引入或不引入双链断裂(DSB)的情况下安装所需的基因改变。这些工具和策略可直接应用于靶向T细胞功能的负调节因子、将治疗性转基因定向到特定基因组位点,以及为按需癌症免疫治疗生成可重复生产的安全且有效的同种异体通用CAR T细胞产品。本综述评估了将下一代CRISPR-Cas9基因编辑与合成生物学相结合的一些当前及未来方向,以优化CAR T细胞疗法用于未来临床试验,朝着建立新的癌症治疗模式迈进。