Suppr超能文献

一种 ICU 假性心律失常报警减少的对比学习方法。

A contrastive learning approach for ICU false arrhythmia alarm reduction.

机构信息

Xi'an Jiaotong University, Xi'an, China.

Nanjing University of Science and Technology, Nanjing, China.

出版信息

Sci Rep. 2022 Mar 18;12(1):4689. doi: 10.1038/s41598-022-07761-9.

Abstract

The high rate of false arrhythmia alarms in Intensive Care Units (ICUs) can lead to disruption of care, negatively impacting patients' health through noise disturbances, and slow staff response time due to alarm fatigue. Prior false-alarm reduction approaches are often rule-based and require hand-crafted features from physiological waveforms as inputs to machine learning classifiers. Despite considerable prior efforts to address the problem, false alarms are a continuing problem in the ICUs. In this work, we present a deep learning framework to automatically learn feature representations of physiological waveforms using convolutional neural networks (CNNs) to discriminate between true vs. false arrhythmia alarms. We use Contrastive Learning to simultaneously minimize a binary cross entropy classification loss and a proposed similarity loss from pair-wise comparisons of waveform segments over time as a discriminative constraint. Furthermore, we augment our deep models with learned embeddings from a rule-based method to leverage prior domain knowledge for each alarm type. We evaluate our method using the dataset from the 2015 PhysioNet Computing in Cardiology Challenge. Ablation analysis demonstrates that Contrastive Learning significantly improves the performance of a combined deep learning and rule-based-embedding approach. Our results indicate that the final proposed deep learning framework achieves superior performance in comparison to the winning entries of the Challenge.

摘要

重症监护病房 (ICU) 中高比例的心律失常假警报会导致护理中断,通过噪声干扰对患者健康产生负面影响,并因警报疲劳而导致医护人员响应时间变慢。先前的减少假警报的方法通常是基于规则的,并且需要从生理波形中手工制作特征作为机器学习分类器的输入。尽管已经做出了相当大的努力来解决这个问题,但在 ICU 中假警报仍然是一个持续存在的问题。在这项工作中,我们提出了一个深度学习框架,使用卷积神经网络 (CNNs) 自动学习生理波形的特征表示,以区分真假心律失常警报。我们使用对比学习同时最小化二进制交叉熵分类损失和从时间上的波形段对之间的成对比较中提出的相似性损失,作为一种有区别的约束。此外,我们通过基于规则的方法从学习的嵌入中增强我们的深度学习模型,以利用每个警报类型的先验领域知识。我们使用 2015 年 PhysioNet 心脏病计算挑战赛的数据来评估我们的方法。消融分析表明,对比学习显著提高了深度学习和基于规则的嵌入方法相结合的性能。我们的结果表明,与挑战赛的获胜者相比,最终提出的深度学习框架在性能上具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/251b/8933571/6d666867eaf0/41598_2022_7761_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验