Suppr超能文献

通过来自在线和代表性调查的加权接触矩阵来重建社会混合模式。

Reconstructing social mixing patterns via weighted contact matrices from online and representative surveys.

机构信息

Computational Social Science and Research Center for Educational and Network Studies, Centre for Social Sciences, Budapest, 1097, Hungary.

Faculty of Social Sciences, Eötvös Loránd University, Budapest, 1117, Hungary.

出版信息

Sci Rep. 2022 Mar 18;12(1):4690. doi: 10.1038/s41598-022-07488-7.

Abstract

The unprecedented behavioural responses of societies have been evidently shaping the COVID-19 pandemic, yet it is a significant challenge to accurately monitor the continuously changing social mixing patterns in real-time. Contact matrices, usually stratified by age, summarise interaction motifs efficiently, but their collection relies on conventional representative survey techniques, which are expensive and slow to obtain. Here we report a data collection effort involving over [Formula: see text] of the Hungarian population to simultaneously record contact matrices through a longitudinal online and sequence of representative phone surveys. To correct non-representative biases characterising the online data, by using census data and the representative samples we develop a reconstruction method to provide a scalable, cheap, and flexible way to dynamically obtain closer-to-representative contact matrices. Our results demonstrate that although some conventional socio-demographic characters correlate significantly with the change of contact numbers, the strongest predictors can be collected only via surveys techniques and combined with census data for the best reconstruction performance. We demonstrate the potential of combined online-offline data collections to understand the changing behavioural responses determining the future evolution of the outbreak, and to inform epidemic models with crucial data.

摘要

社会前所未有的行为反应显然正在塑造 COVID-19 大流行,但准确实时监测不断变化的社交混合模式是一个重大挑战。接触矩阵通常按年龄分层,有效地总结了相互作用模式,但它们的收集依赖于传统的代表性调查技术,这些技术既昂贵又难以获得。在这里,我们报告了一项涉及超过[公式:见文本]的匈牙利人口的数据集收集工作,通过纵向在线和一系列代表性电话调查同时记录接触矩阵。为了纠正在线数据中存在的代表性偏差,我们使用人口普查数据和代表性样本开发了一种重建方法,为动态获取更具代表性的接触矩阵提供了一种具有成本效益且灵活的方法。我们的结果表明,尽管一些传统的社会人口特征与接触次数的变化显著相关,但最强的预测因子只能通过调查技术收集,并与人口普查数据结合使用,以获得最佳的重建效果。我们展示了在线-离线数据收集相结合的潜力,可以了解决定疫情未来演变的不断变化的行为反应,并为传染病模型提供关键数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/593f/8933460/52ab68d008ee/41598_2022_7488_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验