Suppr超能文献

基于无线传感器网络的叶面积指数测量系统的验证。

Validation of leaf area index measurement system based on wireless sensor network.

机构信息

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8, Da Yang Fang, An Wai, Chao Yang District, Beijing, 100012, China.

State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, No.19, Xinjiekou Wai Street, Haidian District, Beijing, 100875, China.

出版信息

Sci Rep. 2022 Mar 18;12(1):4668. doi: 10.1038/s41598-022-08373-z.

Abstract

Accurate measurement of leaf area index (LAI) is important for agricultural analysis such as the estimation of crop yield, which makes its measurement work important. There are mainly two ways to obtain LAI: ground station measurement and remote sensing satellite monitoring. Recently, reliable progress has been made in long-term automatic LAI observation using wireless sensor network (WSN) technology under certain conditions. We developed and designed an LAI measurement system (LAIS) based on a wireless sensor network to select and improve the appropriate algorithm according to the image collected by the sensor, to get a more realistic leaf area index. The corn LAI was continuously observed from May 30 to July 16, 2015. Research on hardware has been published, this paper focuses on improved system algorithm and data verification. By improving the finite length average algorithm, the data validation results are as follows: (1) The slope of the fitting line between LAIS measurement data and the real value is 0.944, and the root means square error (RMSE) is 0.264 (absolute error ~ 0-0.6), which has high consistency with the real value. (2) The measurement error of LAIS is less than LAI2000, although the result of our measurement method will be higher than the actual value, it is due to the influence of weeds on the ground. (3) LAIS data can be used to support the retrieval of remote sensing products. We find a suitable application situation of our LAIS system data, and get our application value as ground monitoring data by the verification with remote sensing product data, which supports its application and promotion in similar research in the future.

摘要

精确测量叶面积指数(LAI)对于农业分析很重要,例如估算作物产量,因此其测量工作很重要。主要有两种方法可以获取 LAI:地面站测量和遥感卫星监测。最近,在某些条件下,无线传感器网络(WSN)技术在长期自动 LAI 观测方面取得了可靠的进展。我们开发和设计了一种基于无线传感器网络的 LAI 测量系统(LAIS),根据传感器采集的图像选择和改进合适的算法,以获得更真实的叶面积指数。2015 年 5 月 30 日至 7 月 16 日,我们连续观测了玉米的 LAI。硬件方面的研究已经发表,本文主要关注改进后的系统算法和数据验证。通过改进有限长度平均算法,数据验证结果如下:(1)LAIS 测量数据与真实值的拟合线斜率为 0.944,均方根误差(RMSE)为 0.264(绝对误差约为 0-0.6),与真实值具有高度一致性。(2)LAIS 的测量误差小于 LAI2000,尽管我们的测量方法的结果会高于实际值,但这是由于地面杂草的影响。(3)LAIS 数据可用于支持遥感产品的反演。我们找到了适合我们 LAIS 系统数据的应用情况,并通过与遥感产品数据的验证获得了我们的应用价值,作为地面监测数据,这支持了其在未来类似研究中的应用和推广。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/72ce/8933413/15225eeb19e1/41598_2022_8373_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验