Department of Radiology, Hôpital Européen Georges Pompidou, AP-HP, Université de Paris, PARCC UMRS 970, INSERM, 20 Rue Leblanc, 75015, Paris, France.
Foodvisor, Paris, France.
Eur Radiol. 2022 Jul;32(7):4728-4737. doi: 10.1007/s00330-022-08579-9. Epub 2022 Mar 18.
To validate a deep learning (DL) algorithm for measurement of skeletal muscular index (SMI) and prediction of overall survival in oncology populations.
A retrospective single-center observational study included patients with metastatic renal cell carcinoma between 2007 and 2019. A set of 37 patients was used for technical validation of the algorithm, comparing manual vs DL-based evaluations. Segmentations were compared using mean Dice similarity coefficient (DSC), SMI using concordance correlation coefficient (CCC) and Bland-Altman plots. Overall survivals (OS) were compared using log-rank (Kaplan-Meier) and Mann-Whitney tests. Generalizability of the prognostic value was tested in an independent validation population (N = 87).
Differences between two manual segmentations (DSC = 0.91, CCC = 0.98 for areas) or manual vs. automated segmentation (DSC = 0.90, CCC = 0.98 for areas, CCC = 0.97 for SMI) had the same order of magnitude. Bland-Altman plots showed a mean difference of -3.33 cm [95%CI: -15.98, 9.1] between two manual segmentations, and -3.28 cm [95% CI: -14.77, 8.21] for manual vs. automated segmentations. With each method, 20/37 (56%) patients were classified as sarcopenic. Sarcopenic vs. non-sarcopenic groups had statistically different survival curves with median OS of 6.0 vs. 12.5 (p = 0.008) and 6.0 vs. 13.9 (p = 0.014) months respectively for manual and DL methods. In the independent validation population, sarcopenic patients according to DL had a lower OS (10.7 vs. 17.3 months, p = 0.033).
A DL algorithm allowed accurate estimation of SMI compared to manual reference standard. The DL-calculated SMI demonstrated a prognostic value in terms of OS.
• A deep learning algorithm allows accurate estimation of skeletal muscle index compared to a manual reference standard with a concordance correlation coefficient of 0.97. • Sarcopenic patients according to SMI thresholds after segmentation by the deep learning algorithm had statistically significantly lower overall survival compared to non-sarcopenic patients.
验证一种深度学习(DL)算法,用于测量肿瘤患者的骨骼肌指数(SMI)和预测总体生存率。
这是一项回顾性单中心观察性研究,纳入了 2007 年至 2019 年间患有转移性肾细胞癌的患者。一组 37 名患者用于技术验证算法,比较手动与基于 DL 的评估。使用平均 Dice 相似系数(DSC)比较分割,使用一致性相关系数(CCC)和 Bland-Altman 图比较 SMI。使用对数秩(Kaplan-Meier)和曼-惠特尼检验比较总体生存率(OS)。在独立验证人群(N=87)中测试预后价值的泛化能力。
两次手动分割之间的差异(面积的 DSC=0.91,CCC=0.98)或手动与自动分割之间的差异(面积的 DSC=0.90,CCC=0.98,SMI 的 CCC=0.97)具有相同的数量级。Bland-Altman 图显示,两次手动分割之间的平均差值为-3.33cm[95%CI:-15.98,9.1],手动与自动分割之间的平均差值为-3.28cm[95%CI:-14.77,8.21]。使用每种方法,37 名患者中的 20 名(56%)被归类为肌肉减少症。根据手动和 DL 方法,肌肉减少症组与非肌肉减少症组的生存曲线有统计学差异,中位 OS 分别为 6.0 个月和 12.5 个月(p=0.008)和 6.0 个月和 13.9 个月(p=0.014)。在独立验证人群中,根据 DL 计算的肌肉减少症患者的 OS 较低(10.7 个月 vs. 17.3 个月,p=0.033)。
与手动参考标准相比,DL 算法可准确估计 SMI。DL 计算的 SMI 显示出与 OS 相关的预后价值。
• 与手动参考标准相比,深度学习算法可以准确估计骨骼肌指数,一致性相关系数为 0.97。
• 根据深度学习算法分割后的 SMI 阈值,肌肉减少症患者的总体生存率明显低于非肌肉减少症患者。