Habert Paul, Decoux Antoine, Chermati Lilia, Gibault Laure, Thomas Pascal, Varoquaux Arthur, Le Pimpec-Barthes Françoise, Arnoux Armelle, Juquel Loïc, Chaumoitre Kathia, Garcia Stéphane, Gaubert Jean-Yves, Duron Loïc, Fournier Laure
Imaging Department, Hopital Nord, APHM, Aix Marseille University, Marseille, France.
LIIE, Aix Marseille Univ, Marseille, France.
Insights Imaging. 2023 Sep 19;14(1):148. doi: 10.1186/s13244-023-01484-9.
Lung carcinoids and atypical hamartomas may be difficult to differentiate but require different treatment. The aim was to differentiate these tumors using contrast-enhanced CT semantic and radiomics criteria.
Between November 2009 and June 2020, consecutives patient operated for hamartomas or carcinoids with contrast-enhanced chest-CT were retrospectively reviewed. Semantic criteria were recorded and radiomics features were extracted from 3D segmentations using Pyradiomics. Reproducible and non-redundant radiomics features were used to training a random forest algorithm with cross-validation. A validation-set from another institution was used to evaluate of the radiomics signature, the 3D 'median' attenuation feature (3D-median) alone and the mean value from 2D-ROIs.
Seventy-three patients (median 58 years [43‒70]) were analyzed (16 hamartomas; 57 carcinoids). The radiomics signature predicted hamartomas vs carcinoids on the external dataset (22 hamartomas; 32 carcinoids) with an AUC = 0.76. The 3D-median was the most important in the model. Density thresholds < 10 HU to predict hamartoma and > 60 HU to predict carcinoids were chosen for their high specificity > 0.90. On the external dataset, sensitivity and specificity of the 3D-median and 2D-ROIs were, respectively, 0.23, 1.00 and 0.13, 1.00 < 10 HU; 0.63, 0.95 and 0.69, 0.91 > 60 HU. The 3D-median was more reproducible than 2D-ROIs (ICC = 0.97 95% CI [0.95‒0.99]; bias: 3 ± 7 HU limits of agreement (LoA) [- 10‒16] vs. ICC = 0.90 95% CI [0.85‒0.94]; bias: - 0.7 ± 21 HU LoA [- 4‒40], respectively).
A radiomics signature can distinguish hamartomas from carcinoids with an AUC = 0.76. Median density < 10 HU and > 60 HU on 3D or 2D-ROIs may be useful in clinical practice to diagnose these tumors with confidence, but 3D is more reproducible.
Radiomic features help to identify the most discriminating imaging signs using random forest. 'Median' attenuation value (Hounsfield units), extracted from 3D-segmentations on contrast-enhanced chest-CTs, could distinguish carcinoids from atypical hamartomas (AUC = 0.85), was reproducible (ICC = 0.97), and generalized to an external dataset.
• 3D-'Median' was the best feature to differentiate carcinoids from atypical hamartomas (AUC = 0.85). • 3D-'Median' feature is reproducible (ICC = 0.97) and was generalized to an external dataset. • Radiomics signature from 3D-segmentations differentiated carcinoids from atypical hamartomas with an AUC = 0.76. • 2D-ROI value reached similar performance to 3D-'median' but was less reproducible (ICC = 0.90).
肺类癌和非典型错构瘤可能难以区分,但需要不同的治疗方法。本研究旨在使用对比增强CT语义和放射组学标准来区分这些肿瘤。
回顾性分析2009年11月至2020年6月期间连续接受对比增强胸部CT检查并接受错构瘤或类癌手术的患者。记录语义标准,并使用Pyradiomics从三维分割中提取放射组学特征。使用可重复且非冗余的放射组学特征训练带有交叉验证的随机森林算法。使用来自另一家机构的验证集来评估放射组学特征、单独的三维“中位数”衰减特征(三维中位数)以及二维感兴趣区的平均值。
分析了73例患者(中位年龄58岁[43 - 70岁])(16例错构瘤;57例类癌)。放射组学特征在外部数据集(22例错构瘤;32例类癌)上预测错构瘤与类癌的曲线下面积(AUC)= 0.76。三维中位数在模型中最为重要。选择密度阈值<10 HU来预测错构瘤,>60 HU来预测类癌,因为它们具有>0.90的高特异性。在外部数据集中,三维中位数和二维感兴趣区的敏感性和特异性分别为,<10 HU时为0.23、1.00和0.13、1.00;>60 HU时为0.63、0.95和0.69、0.91。三维中位数比二维感兴趣区更具可重复性(组内相关系数(ICC)= 0.97,95%置信区间[0.95 - 0.99];偏差:3±7 HU,一致性界限(LoA)[-10 - 16],而ICC = 0.90,95%置信区间[0.85 - 0.94];偏差:-0.7±21 HU,LoA [-4 - 40])。
放射组学特征可以区分错构瘤和类癌,AUC = 0.76。三维或二维感兴趣区上的中位数密度<10 HU和>60 HU在临床实践中可能有助于可靠地诊断这些肿瘤,但三维更具可重复性。
放射组学特征有助于使用随机森林识别最具鉴别力的影像征象。从对比增强胸部CT的三维分割中提取的“中位数”衰减值(亨氏单位)可以区分类癌和非典型错构瘤(AUC = 0.85),具有可重复性(ICC = 0.97)并能推广到外部数据集。
• 三维“中位数”是区分类癌和非典型错构瘤的最佳特征(AUC = 0.85)。• 三维“中位数”特征具有可重复性(ICC = 0.97)并能推广到外部数据集。• 三维分割的放射组学特征区分类癌和非典型错构瘤的AUC = 0.76。• 二维感兴趣区值达到与三维“中位数”相似的性能,但可重复性较差(ICC = 0.90)。