Suppr超能文献

评估 COVID-19 大流行的社会影响:来自巴基斯坦的实证证据。

Evaluating the social outcomes of COVID-19 pandemic: empirical evidence from Pakistan.

机构信息

School of Economics and Management, Nanjing University of Science and Technology, Nanjing, 210094, China.

Riphah School of Business and Management, Riphah International University Lahore, Raiwind Campus, Lahore, Pakistan.

出版信息

Environ Sci Pollut Res Int. 2023 May;30(22):61466-61478. doi: 10.1007/s11356-022-19628-7. Epub 2022 Mar 19.

Abstract

The study aims to assess and analyze the social outcomes of the COVID-19 pandemic. The study uses the discourse of comprehensive literature review to identify the outcomes, Interpretive Structural Modeling (ISM) for developing a structural model and Matrices' Impacts Cruise's Multiplication Appliquée a UN Classement (MICMAC) for analysis, classification of societal outcomes, and corroboration of results of ISM. Data from fifteen experts was collected through a survey questionnaire. As a result of the literature review, a list of sixteen outcomes was generated and verified by a panel of experts. Results of ISM revealed that the outcomes, namely, "emotional instability," "mental health self-harm," loneliness reduced recreational activities, obesity, and "increased screen time" come at the top of the model; therefore, they are less vital outcomes, whereas the most significant outcome which is at the bottom of the model is "employment instability"; hence it has a major impact on the society. The remaining outcomes fall in the middle of the model, so they have a moderate-severe impact. Results of MICMAC validate the findings of ISM. Overall findings of the study reveal that "employment instability" is the crucial social outcome of the COVID-19 pandemic. It is an original attempt based on real-time data, which is helpful for society at large, researchers, the international community, and policymakers because this study provides a lot of new information about the phenomenon. The study includes understanding society at large, policymakers, and researchers by illustrating the complex relations and simplifying the connections among a wide range of social outcomes of COVID-19.

摘要

这项研究旨在评估和分析 COVID-19 大流行的社会后果。该研究采用综合文献综述的话语来识别后果,使用解释结构建模(ISM)来开发结构模型,并使用矩阵的影响乘法应用于分类(MICMAC)进行分析、分类社会结果,并证实 ISM 的结果。通过问卷调查收集了来自 15 位专家的数据。通过文献回顾,生成了一份包含 16 个结果的清单,并由专家小组进行了验证。ISM 的结果表明,后果,即“情绪不稳定”、“心理健康自我伤害”、孤独减少娱乐活动、肥胖和“增加屏幕时间”处于模型的顶部;因此,它们是不太重要的后果,而处于模型底部的最重要的后果是“就业不稳定”;因此,它对社会有重大影响。其余结果处于模型的中间,因此它们具有中度至严重的影响。MICMAC 的结果验证了 ISM 的发现。该研究的总体结果表明,“就业不稳定”是 COVID-19 大流行的关键社会后果。这是一项基于实时数据的原创尝试,对整个社会、研究人员、国际社会和政策制定者都有帮助,因为这项研究提供了大量关于这一现象的新信息。该研究通过说明广泛的 COVID-19 社会后果之间的复杂关系和简化联系,使社会大众、政策制定者和研究人员能够理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5baf/8934127/9ad124ba3510/11356_2022_19628_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验