Suppr超能文献

碳价预测:一种新的深度学习方法。

Carbon price forecasting: a novel deep learning approach.

机构信息

School of Economics, Capital University of Economics and Business, Beijing, 100070, China.

School of Automation Science and Electrical Engineering, Beihang University, Beijing, 100191, China.

出版信息

Environ Sci Pollut Res Int. 2022 Aug;29(36):54782-54795. doi: 10.1007/s11356-022-19713-x. Epub 2022 Mar 19.

Abstract

Carbon emission trading market promotes carbon emission reduction effectively. Accurate carbon price forecasting is crucial for relevant policy makers and investors. However, due to the non-linearity, uncertainty, and complexity of carbon prices, the current predication models fail to predict carbon prices accurately. In this paper, an advanced deep neural network model named TCN-Seq2Seq is proposed to forecast carbon prices. The novelty of the proposed model focuses on the "sequence to sequence" layout to learn temporal data dependencies using only fully convolutional layers. Being provided with parallel training for fewer parameters, TCN-Seq2Seq forecasting model is more suitable for small carbon price dataset in few-shot learning way. Qualitatively and quantitatively, we find that the proposed framework consistently and significantly outperforms traditional statistical forecasting models and state-of-the-art deep learning prediction model with respect to predictive ability and robustness. Particularly, our proposed model achieves forecasting accuracy with the highest DA value (0.9697), the lowest MAPE value (0.0027), and the lowest RMSE value (0.0149), showing superior prediction performance compared with the traditional statistical forecasting models. The accuracy of carbon price forecasting gives insight to policy makers and carbon market investors.

摘要

碳排放交易市场有效地促进了碳减排。准确的碳价预测对相关政策制定者和投资者至关重要。然而,由于碳价格的非线性、不确定性和复杂性,当前的预测模型无法准确地预测碳价格。本文提出了一种名为 TCN-Seq2Seq 的先进深度神经网络模型来预测碳价格。所提出模型的新颖之处在于其采用“序列到序列”布局,仅使用全卷积层学习时间数据依赖性。由于具有并行训练和较少的参数,TCN-Seq2Seq 预测模型更适合于小数据集的少量学习方式。从定性和定量两个方面来看,我们发现与传统的统计预测模型和最先进的深度学习预测模型相比,所提出的框架在预测能力和稳健性方面始终具有显著优势。特别是,我们提出的模型实现了最高 DA 值(0.9697)、最低 MAPE 值(0.0027)和最低 RMSE 值(0.0149)的预测精度,与传统的统计预测模型相比,具有优越的预测性能。碳价预测的准确性为政策制定者和碳市场投资者提供了深入的了解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验