Suppr超能文献

利用人工神经网络从垂体腺瘤的T2加权磁共振成像放射组学检测激素分泌谱的多变量诊断预测模型

Multivariable Diagnostic Prediction Model to Detect Hormone Secretion Profile From T2W MRI Radiomics with Artificial Neural Networks in Pituitary Adenomas.

作者信息

Baysal Begumhan, Eser Mehmet Bilgin, Dogan Mahmut Bilal, Kursun Muhammet Arif

机构信息

Istanbul Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Clinic of Radiology, Istanbul, Turkey.

出版信息

Medeni Med J. 2022 Mar 18;37(1):36-43. doi: 10.4274/MMJ.galenos.2022.58538.

Abstract

OBJECTIVE

This study aims to develop neural networks to detect hormone secretion profiles in the pituitary adenomas based on T2 weighted magnetic resonance imaging (MRI) radiomics.

METHODS

This retrospective model-development study included a cohort of patients with pituitary adenomas (n=130) from January 2015 to January 2020 in one tertiary center. The mean age was 46.49±13.69 years, and 76/130 (58.46%) were women. Three observers segmented lesions on coronal T2 weighted MRI, and an interrater agreement was evaluated using the Dice coefficient. Predictors were determined as radiomics features (n=851). Feature selection was based on intraclass correlation coefficient, coefficient variance, variance inflation factor, and LASSO regression analysis. Outcomes were identified as 7 hormone secretion profiles [non-functioning pituitary adenoma, growth hormone-secreting adenomas, prolactinomas, adrenocorticotropic hormone-secreting adenomas, pluri-hormonal secreting adenomas (PHA), follicle-stimulating hormone and luteinizing hormone-secreting adenomas, and thyroid-stimulating hormone adenomas]. A multivariable diagnostic prediction model was developed with artificial neural networks (ANN) for 7 outcomes. ANN performance was presented as an area under the receiver operating characteristic curve (AUC) and accepted as successful if the AUC was >0.85 and p-value was <0.01.

RESULTS

The performance of the ANN distinguishing prolactinomas from other adenomas was validated (AUC=0.95, p<0.001, sensitivity: 91%, and specificity: 98%). The model distinguishing PHA had the lowest AUC (AUC=0.74 and p<0.001). The AUC values for the other five ANN were >0.85 and p values were <0.001.

CONCLUSIONS

This study was successful in training neural networks that could differentiate the hormone secretion profile of pituitary adenomas.

摘要

目的

本研究旨在开发神经网络,基于T2加权磁共振成像(MRI)放射组学检测垂体腺瘤中的激素分泌谱。

方法

这项回顾性模型开发研究纳入了2015年1月至2020年1月在一家三级中心的一组垂体腺瘤患者(n = 130)。平均年龄为46.49±13.69岁,130例中有76例(58.46%)为女性。三名观察者在冠状位T2加权MRI上对病变进行分割,并使用Dice系数评估观察者间的一致性。预测因子被确定为放射组学特征(n = 851)。特征选择基于组内相关系数、系数方差、方差膨胀因子和LASSO回归分析。结果被确定为7种激素分泌谱[无功能性垂体腺瘤、生长激素分泌性腺瘤、催乳素瘤、促肾上腺皮质激素分泌性腺瘤、多激素分泌性腺瘤(PHA)、促卵泡激素和促黄体生成素分泌性腺瘤以及促甲状腺激素腺瘤]。使用人工神经网络(ANN)针对7种结果开发了多变量诊断预测模型。ANN的性能以受试者工作特征曲线下面积(AUC)表示,如果AUC>0.85且p值<0.01,则认为模型成功。

结果

ANN区分催乳素瘤与其他腺瘤的性能得到验证(AUC = 0.95,p<0.001,敏感性:91%,特异性:98%)。区分PHA的模型AUC最低(AUC = 0.74且p<0.001)。其他五个ANN的AUC值>0.85且p值<0.001。

结论

本研究成功训练出了能够区分垂体腺瘤激素分泌谱的神经网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/998f/8939455/d03c01565da7/medj-37-36-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验