Suppr超能文献

基于计算机视觉的垂体腺瘤影像组学研究:综述

Radiomics of pituitary adenoma using computer vision: a review.

机构信息

Saint Michal's Hospital, Bratislava, Slovakia.

Masaryk University, Brno, Czech Republic.

出版信息

Med Biol Eng Comput. 2024 Dec;62(12):3581-3597. doi: 10.1007/s11517-024-03163-3. Epub 2024 Jul 16.

Abstract

Pituitary adenomas (PA) represent the most common type of sellar neoplasm. Extracting relevant information from radiological images is essential for decision support in addressing various objectives related to PA. Given the critical need for an accurate assessment of the natural progression of PA, computer vision (CV) and artificial intelligence (AI) play a pivotal role in automatically extracting features from radiological images. The field of "Radiomics" involves the extraction of high-dimensional features, often referred to as "Radiomic features," from digital radiological images. This survey offers an analysis of the current state of research in PA radiomics. Our work comprises a systematic review of 34 publications focused on PA radiomics and other automated information mining pertaining to PA through the analysis of radiological data using computer vision methods. We begin with a theoretical exploration essential for understanding the theoretical background of radionmics, encompassing traditional approaches from computer vision and machine learning, as well as the latest methodologies in deep radiomics utilizing deep learning (DL). Thirty-four research works under examination are comprehensively compared and evaluated. The overall results achieved in the analyzed papers are high, e.g., the best accuracy is up to 96% and the best achieved AUC is up to 0.99, which establishes optimism for the successful use of radiomic features. Methods based on deep learning seem to be the most promising for the future. In relation to this perspective DL methods, several challenges are remarkable: It is important to create high-quality and sufficiently extensive datasets necessary for training deep neural networks. Interpretability of deep radiomics is also a big open challenge. It is necessary to develop and verify methods that will explain to us how deep radiomic features reflect various physics-explainable aspects.

摘要

垂体腺瘤 (PA) 是最常见的鞍区肿瘤。从影像学中提取相关信息对于解决与 PA 相关的各种目标的决策支持至关重要。鉴于对 PA 自然进展进行准确评估的迫切需求,计算机视觉 (CV) 和人工智能 (AI) 在自动从影像学图像中提取特征方面发挥着关键作用。“放射组学”领域涉及从数字放射图像中提取高维特征,通常称为“放射组学特征”。本调查分析了 PA 放射组学的研究现状。我们的工作包括对 34 篇专注于 PA 放射组学和其他使用计算机视觉方法分析放射数据的自动信息挖掘的出版物进行系统回顾。我们首先从理论上探索,这对于理解放射组学的理论背景至关重要,包括计算机视觉和机器学习的传统方法,以及利用深度学习 (DL) 的最新深度放射组学方法。对 34 项研究工作进行了全面比较和评估。分析论文中取得的总体结果很高,例如,最佳准确率高达 96%,最佳 AUC 高达 0.99,这为成功使用放射组学特征建立了乐观态度。基于深度学习的方法似乎是未来最有前途的。从这个角度来看,深度学习方法有几个值得注意的挑战:创建用于训练深度神经网络的高质量和足够广泛的数据集非常重要。深度放射组学的可解释性也是一个巨大的开放性挑战。有必要开发和验证能够向我们解释深度放射组学特征如何反映各种可解释物理方面的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7f7/11568991/1b8ff1cb461f/11517_2024_3163_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验