Suppr超能文献

垂体瘤的放射组学分析:当前认知与未来展望

Radiomic Analysis in Pituitary Tumors: Current Knowledge and Future Perspectives.

作者信息

Bioletto Fabio, Prencipe Nunzia, Berton Alessandro Maria, Aversa Luigi Simone, Cuboni Daniela, Varaldo Emanuele, Gasco Valentina, Ghigo Ezio, Grottoli Silvia

机构信息

Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.

出版信息

J Clin Med. 2024 Jan 7;13(2):336. doi: 10.3390/jcm13020336.

Abstract

Radiomic analysis has emerged as a valuable tool for extracting quantitative features from medical imaging data, providing in-depth insights into various contexts and diseases. By employing methods derived from advanced computational techniques, radiomics quantifies textural information through the evaluation of the spatial distribution of signal intensities and inter-voxel relationships. In recent years, these techniques have gained considerable attention also in the field of pituitary tumors, with promising results. Indeed, the extraction of radiomic features from pituitary magnetic resonance imaging (MRI) images has been shown to provide useful information on various relevant aspects of these diseases. Some of the key topics that have been explored in the existing literature include the association of radiomic parameters with histopathological and clinical data and their correlation with tumor invasiveness and aggressive behavior. Their prognostic value has also been evaluated, assessing their role in the prediction of post-surgical recurrence, response to medical treatments, and long-term outcomes. This review provides a comprehensive overview of the current knowledge and application of radiomics in pituitary tumors. It also examines the current limitations and future directions of radiomic analysis, highlighting the major challenges that need to be addressed before a consistent integration of these techniques into routine clinical practice.

摘要

放射组学分析已成为从医学影像数据中提取定量特征的宝贵工具,能深入洞察各种情况和疾病。通过运用源自先进计算技术的方法,放射组学通过评估信号强度的空间分布和体素间关系来量化纹理信息。近年来,这些技术在垂体瘤领域也备受关注,并取得了令人鼓舞的成果。事实上,从垂体磁共振成像(MRI)图像中提取放射组学特征已被证明能提供有关这些疾病各种相关方面的有用信息。现有文献中探讨的一些关键主题包括放射组学参数与组织病理学和临床数据的关联以及它们与肿瘤侵袭性和侵袭行为的相关性。它们的预后价值也已得到评估,评估其在预测术后复发、对医学治疗的反应和长期结果中的作用。本综述全面概述了放射组学在垂体瘤中的当前知识和应用。它还审视了放射组学分析当前的局限性和未来方向,强调在将这些技术持续整合到常规临床实践之前需要解决的主要挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a086/10816809/7883697c9ad0/jcm-13-00336-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验