Suppr超能文献

预测整个 COVID-19 大流行期间新发精神障碍:一种机器学习方法。

Predicting New-Onset Psychiatric Disorders Throughout the COVID-19 Pandemic: A Machine Learning Approach.

机构信息

Department of Biomedical Sciences, Humanitas University, Milan, Italy (Caldirola, Cuniberti, Daccò, Grassi, Torti, Perna); Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, Italy (Caldirola, Cuniberti, Daccò, Grassi, Perna); ASIPSE School of Cognitive-Behavioral Therapy, Milan, Italy (Torti); Humanitas San Pio X, Personalized Medicine Center for Anxiety and Panic Disorders, Milan, Italy (Caldirola, Cuniberti, Perna).

出版信息

J Neuropsychiatry Clin Neurosci. 2022 Summer;34(3):233-246. doi: 10.1176/appi.neuropsych.21060148. Epub 2022 Mar 21.

Abstract

OBJECTIVE

The investigators estimated new-onset psychiatric disorders (PsyDs) throughout the COVID-19 pandemic in Italian adults without preexisting PsyDs and developed a machine learning (ML) model predictive of at least one new-onset PsyD in subsequent independent samples.

METHODS

Data were from the first (May 18-June 20, 2020) and second (September 15-October 20, 2020) waves of an ongoing longitudinal study, based on a self-reported online survey. Provisional diagnoses of PsyDs (PPsyDs) were assessed via DSM-based screening tools to maximize assessment specificity. Gradient-boosted decision trees as an ML modeling technique and the SHapley Additive exPlanations technique were applied to identify each variable's contribution to the model.

RESULTS

From the original sample of 3,532 participants, the final sample included 500 participants in the first wave and 236 in the second. Some 16.0% of first-wave participants and 18.6% of second-wave participants met criteria for at least one new-onset PPsyD. The final best ML predictive model, trained on the first wave, displayed a sensitivity of 70% and a specificity of 73% when tested on the second wave. The following variables made the largest contributions: low resilience, being an undergraduate student, and being stressed by pandemic-related conditions. Living alone and having ceased physical activity contributed to a lesser extent.

CONCLUSIONS

Substantial rates of new-onset PPsyDs emerged among Italians throughout the pandemic, and the ML model exhibited moderate predictive performance. Results highlight modifiable vulnerability factors that are suitable for targeting by public campaigns or interventions to mitigate the pandemic's detrimental effects on mental health.

摘要

目的

本研究旨在评估意大利无既往精神障碍史的成年人在 COVID-19 大流行期间新发精神障碍(PsyD)的情况,并开发一种机器学习(ML)模型,以预测后续独立样本中至少一种新发 PsyD 的发生。

方法

数据来自一项正在进行的纵向研究的第一波(2020 年 5 月 18 日至 6 月 20 日)和第二波(2020 年 9 月 15 日至 10 月 20 日),基于自我报告的在线调查。通过基于 DSM 的筛查工具评估暂定精神障碍诊断(PPsyD),以最大限度地提高评估特异性。梯度提升决策树作为一种 ML 建模技术和 Shapley 加法解释技术被应用于识别每个变量对模型的贡献。

结果

从最初的 3532 名参与者中,最终样本包括第一波的 500 名参与者和第二波的 236 名参与者。第一波参与者中有 16.0%和第二波参与者中有 18.6%符合至少一种新发 PPsyD 的标准。最终最佳 ML 预测模型,在第一波上进行训练,在第二波上测试时,灵敏度为 70%,特异性为 73%。贡献最大的变量如下:低韧性、本科生和受与大流行相关条件的压力。独居和停止体育活动的贡献程度较小。

结论

在整个大流行期间,意大利人出现了大量新发 PPsyD,ML 模型表现出中等预测性能。结果突出了可改变的脆弱性因素,适合通过公共运动或干预措施来减轻大流行对心理健康的不利影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验