Suppr超能文献

一种基于YOLOv5融合特征增强的新型低光照目标检测方法。

A novel low light object detection method based on the YOLOv5 fusion feature enhancement.

作者信息

Peng Daxin, Ding Wei, Zhen Tong

机构信息

College of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China.

Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou, 450001, China.

出版信息

Sci Rep. 2024 Feb 23;14(1):4486. doi: 10.1038/s41598-024-54428-8.

Abstract

Low-light object detection is an important research area in computer vision, but it is also a difficult issue. This research offers a low-light target detection network, NLE-YOLO, based on YOLOV5, to address the issues of insufficient illumination and noise interference experienced by target detection tasks in low-light environments. The network initially preprocesses the input image with an improvement technique before suppressing high-frequency noise and enhancing essential information with C2fLEFEM, a unique feature extraction module. We also created a multi-scale feature extraction module, AMC2fLEFEM, and an attention mechanism receptive field module, AMRFB, which are utilized to extract features of multiple scales and enhance the receptive field. The C2fLEFEM module, in particular, merges the LEF and FEM modules on top of the C2f module. The LEF module employs a low-frequency filter to remove high-frequency noise; the FEM module employs dual inputs to fuse low-frequency enhanced and original features; and the C2f module employs a gradient retention method to minimize information loss. The AMC2fLEFEM module combines the SimAM attention mechanism and uses the pixel relationship to obtain features of different receptive fields, adapt to brightness changes, capture the difference between the target and the background, improve the network's feature extraction capability, and effectively reduce the impact of noise. The AMRFB module employs atrous convolution to enlarge the receptive field, maintain global information, and adjust to targets of various scales. Finally, for low-light settings, we replaced the original YOLOv5 detection head with a decoupled head. The Exdark dataset experiments show that our method outperforms previous methods in terms of detection accuracy and performance.

摘要

低光目标检测是计算机视觉中的一个重要研究领域,但也是一个难题。本研究基于YOLOV5提供了一种低光目标检测网络NLE-YOLO,以解决低光环境下目标检测任务所面临的光照不足和噪声干扰问题。该网络首先使用一种改进技术对输入图像进行预处理,然后通过独特的特征提取模块C2fLEFEM抑制高频噪声并增强关键信息。我们还创建了多尺度特征提取模块AMC2fLEFEM和注意力机制感受野模块AMRFB,用于提取多尺度特征并增强感受野。特别是,C2fLEFEM模块在C2f模块之上合并了LEF和FEM模块。LEF模块采用低频滤波器去除高频噪声;FEM模块采用双输入融合低频增强特征和原始特征;C2f模块采用梯度保留方法以最小化信息损失。AMC2fLEFEM模块结合了SimAM注意力机制,并利用像素关系获取不同感受野的特征,适应亮度变化,捕捉目标与背景之间的差异,提高网络的特征提取能力,并有效降低噪声的影响。AMRFB模块采用空洞卷积扩大感受野,保持全局信息,并适应各种尺度的目标。最后,针对低光设置,我们用解耦头替换了原来的YOLOv5检测头。在Exdark数据集上的实验表明,我们的方法在检测精度和性能方面优于以前的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e804/10891144/58d3d2aa3dc2/41598_2024_54428_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验