Suppr超能文献

响应亚硝化应激时GTP环水解酶II的鉴定与功能分析

Identification and Functional Analysis of GTP Cyclohydrolase II in in Response to Nitrosative Stress.

作者信息

Nasuno Ryo, Suzuki Soma, Oiki Sayoko, Hagiwara Daisuke, Takagi Hiroshi

机构信息

Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.

Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.

出版信息

Front Microbiol. 2022 Mar 2;13:825121. doi: 10.3389/fmicb.2022.825121. eCollection 2022.

Abstract

Reactive nitrogen species (RNS) are signal molecules involved in various biological events; however, excess levels of RNS cause nitrosative stress, leading to cell death and/or cellular dysfunction. During the process of infection, pathogens are exposed to nitrosative stress induced by host-derived RNS. Therefore, the nitrosative stress resistance mechanisms of pathogenic microorganisms are important for their infection and pathogenicity, and could be promising targets for antibiotics. Previously, we demonstrated that the gene encoding GTP cyclohydrolase II (GCH2), which catalyzes the first step of the riboflavin biosynthesis pathway, is important for nitrosative stress resistance in the yeast . Here, we identified and characterized the gene in the opportunistic pathogenic yeast . Our genetic and biochemical analyses indicated that the open reading frame of CAGL0F04279g functions as in (). Subsequently, we analyzed the effect of on nitrosative stress resistance by a growth test in the presence of RNS. Overexpression or deletion of increased or decreased the nitrosative stress resistance of , respectively, indicating that GCH2 confers nitrosative stress resistance on yeast cells. Moreover, we showed that the proliferation of in cultures of macrophage-like cells required the GCH2-dependent nitrosative stress detoxifying mechanism. Additionally, an infection assay using silkworms as model host organisms indicated that is indispensable for the virulence of . Our findings suggest that the GCH2-dependent nitrosative stress detoxifying mechanism is a promising target for the development of novel antibiotics.

摘要

活性氮物质(RNS)是参与各种生物事件的信号分子;然而,过量的RNS会导致亚硝化应激,从而导致细胞死亡和/或细胞功能障碍。在感染过程中,病原体暴露于宿主来源的RNS诱导的亚硝化应激中。因此,病原微生物的亚硝化应激抗性机制对其感染和致病性很重要,并且可能是抗生素的有前景的靶点。此前,我们证明编码GTP环化水解酶II(GCH2)的基因催化核黄素生物合成途径的第一步,对酵母中的亚硝化应激抗性很重要。在这里,我们鉴定并表征了机会致病性酵母中的该基因。我们的遗传和生化分析表明,CAGL0F04279g的开放阅读框在()中起作用。随后,我们通过在RNS存在下的生长试验分析了对亚硝化应激抗性的影响。的过表达或缺失分别增加或降低了的亚硝化应激抗性,表明GCH2赋予酵母细胞亚硝化应激抗性。此外,我们表明在巨噬细胞样细胞培养物中的增殖需要GCH2依赖性亚硝化应激解毒机制。另外,使用家蚕作为模型宿主生物的感染试验表明,对于的毒力是必不可少的。我们的发现表明,GCH2依赖性亚硝化应激解毒机制是开发新型抗生素的有前景的靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b287/8924521/ee10ec567141/fmicb-13-825121-g001.jpg

相似文献

10
Defining the transcriptomic landscape of Candida glabrata by RNA-Seq.通过RNA测序定义光滑念珠菌的转录组图谱。
Nucleic Acids Res. 2015 Feb 18;43(3):1392-406. doi: 10.1093/nar/gku1357. Epub 2015 Jan 13.

本文引用的文献

5
Biochemistry of Peroxynitrite and Protein Tyrosine Nitration.过氧亚硝酸盐的生物化学与蛋白质酪氨酸硝化。
Chem Rev. 2018 Feb 14;118(3):1338-1408. doi: 10.1021/acs.chemrev.7b00568. Epub 2018 Feb 5.
10
Candida glabrata survives and replicates in human osteoblasts.光滑念珠菌可在人成骨细胞中存活并繁殖。
Pathog Dis. 2016 Jun;74(4):ftw030. doi: 10.1093/femspd/ftw030. Epub 2016 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验