Fernandes Minori Adriane, Jadhav Saurabh, Chen Haojin, Fong Samantha, Tolley Michael T
Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA, United States.
School of Computer Science, Human and Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, United States.
Front Robot AI. 2022 Mar 3;9:844282. doi: 10.3389/frobt.2022.844282. eCollection 2022.
Robots composed of soft materials can passively adapt to constrained environments and mitigate damage due to impact. Given these features, jumping has been explored as a mode of locomotion for soft robots. However, for mesoscale jumping robots, lightweight and compact actuation are required. Previous work focused on systems powered by fluids, combustion, smart materials, electromagnetic, or electrostatic motors, which require one or more of the following: large rigid components, external power supplies, components of specific, pre-defined sizes, or fast actuation. In this work, we propose an approach to design and fabricate an electrically powered soft amplification mechanism to enable untethered mesoscale systems with continuously tunable performance. We used the tunable geometry of a liquid crystal elastomer actuator, an elastic hemispherical shell, and a pouch motor for active latching to achieve rapid motions for jumping despite the slow contraction rate of the actuator. Our system amplified the power output of the LCE actuator by a factor of 8.12 × 10 with a specific power of 26.4 W/kg and jumped to a height of 55.6 mm (with a 20 g payload). This work enables future explorations for electrically untethered soft systems capable of rapid motions (e.g., jumping).
由软材料组成的机器人可以被动地适应受限环境并减轻因撞击造成的损坏。鉴于这些特性,跳跃已被探索作为软机器人的一种运动模式。然而,对于中尺度跳跃机器人来说,需要轻量化且紧凑的驱动方式。先前的工作集中在由流体、燃烧、智能材料、电磁或静电电机驱动的系统上,这些系统需要以下一项或多项:大型刚性部件、外部电源、特定预定义尺寸的部件或快速驱动。在这项工作中,我们提出了一种设计和制造电动软放大机制的方法,以实现具有连续可调性能的无束缚中尺度系统。我们利用液晶弹性体致动器、弹性半球形外壳和用于主动锁定的囊式电机的可调几何结构,尽管致动器的收缩速度较慢,但仍能实现跳跃的快速运动。我们的系统将液晶弹性体致动器的功率输出放大了 $8.12\times10$ 倍,比功率为 $26.4$ W/kg,并跳跃到了 $55.6$ 毫米的高度(携带 $20$ 克的负载)。这项工作为未来探索能够进行快速运动(如跳跃)的无束缚软系统开辟了道路。