Loyola University Chicago Stritch School of Medicine, Maywood, IL.
Loyola University Chicago, Chicago, IL.
AMIA Annu Symp Proc. 2022 Feb 21;2021:247-254. eCollection 2021.
Unhealthy alcohol use represents a major economic burden and cause of morbidity and mortality in the United States. Implementation of interventions for unhealthy alcohol use depends on the availability and accuracy of screening tools. Our group previously applied methods in natural language processing and machine learning to build a classifier for unhealthy alcohol use. In this study, we sought to evaluate and address bias through the use-case of our classifier. We demonstrated the presence of biased unhealthy alcohol use risk underestimation among Hispanic compared to Non-Hispanic White trauma inpatients, 18- to 44-year-old compared to 45 years and older medical/surgical inpatients, and Non-Hispanic Black compared to Non-Hispanic White medical/surgical inpatients. We further showed that intercept, slope, and concurrent intercept and slope recalibration resulted in minimal or no improvements in bias-indicating metrics within these subgroups. Our results exemplify the importance of integrating bias assessment early into the classifier development pipeline.
在美国,不健康的饮酒行为是一个主要的经济负担,也是发病率和死亡率的一个主要原因。实施针对不健康饮酒的干预措施取决于筛查工具的可用性和准确性。我们的团队之前应用自然语言处理和机器学习方法来构建一个用于不健康饮酒的分类器。在这项研究中,我们通过使用我们的分类器来评估和解决偏见问题。我们发现,与非西班牙裔白人创伤住院患者相比,西班牙裔患者的不健康饮酒风险被低估;与 45 岁及以上的内科/外科住院患者相比,18 至 44 岁的内科/外科住院患者的不健康饮酒风险被低估;与非西班牙裔白人内科/外科住院患者相比,非西班牙裔黑人患者的不健康饮酒风险被低估。我们还发现,在这些亚组中,截距、斜率以及同时对截距和斜率进行重新校准,对指示偏倚的指标几乎没有或没有任何改善。我们的研究结果说明了在分类器开发过程中尽早纳入偏差评估的重要性。