Suppr超能文献

非监督式 Major Depressive Disorder 药物治疗途径特征描述。

Unsupervised characterization of Major Depressive Disorder medication treatment pathways.

机构信息

Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:591-600. eCollection 2021.

Abstract

Learning health systems have the ability to systematically evaluate treatments and treatment pathways. Characterization of treatment pathways can enhance a health system's ability to perform systematic evaluation to improve care quality. In this study we use a Long-Short Term Memory (LSTM) autoencoder model to systematically characterize treatment pathways in a prevalent phenotype-Major Depressive Disorder (MDD). LSTM autoencoder models generate representations of medication treatment pathways that account for temporality and complex interactions. Patients with similar pathways are grouped with K-means clustering. Clusters are characterized by analysis of medication utilization sequences and trends, as well as clinical features, such as demographics, outcomes and comorbidities. Cluster characterization identifies endotypes of MDD including acute MDD, moderate-chronic MDD and severe-chronic, but managed MDD.

摘要

学习型医疗体系有能力系统地评估治疗方法和治疗途径。治疗途径的特征描述可以增强医疗体系进行系统评估以改善护理质量的能力。在本研究中,我们使用长短时记忆 (LSTM) 自动编码器模型对常见表型-重度抑郁症 (MDD) 中的治疗途径进行系统特征描述。LSTM 自动编码器模型生成药物治疗途径的表示形式,这些表示形式考虑了时间性和复杂的相互作用。具有相似途径的患者通过 K-均值聚类进行分组。聚类通过分析药物使用序列和趋势以及临床特征(如人口统计学、结局和合并症)来进行特征描述。聚类特征描述确定了 MDD 的内表型,包括急性 MDD、中重度慢性 MDD 和重度慢性 MDD,但可以进行管理的 MDD。

相似文献

本文引用的文献

4
Challenges of Treatment-resistant Depression.难治性抑郁症的挑战
Psychiatr Danub. 2018 Sep;30(3):273-284. doi: 10.24869/psyd.2018.273.
6
Learning from heterogeneous temporal data in electronic health records.从电子健康记录中的异构时间数据中学习。
J Biomed Inform. 2017 Jan;65:105-119. doi: 10.1016/j.jbi.2016.11.006. Epub 2016 Dec 2.
7
Predicting Suicidal Behavior From Longitudinal Electronic Health Records.从纵向电子健康记录预测自杀行为。
Am J Psychiatry. 2017 Feb 1;174(2):154-162. doi: 10.1176/appi.ajp.2016.16010077. Epub 2016 Sep 9.
9
Rapid learning: a breakthrough agenda.快速学习:一项突破性议程。
Health Aff (Millwood). 2014 Jul;33(7):1155-62. doi: 10.1377/hlthaff.2014.0043.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验