Suppr超能文献

从分诊时可获得的数据预测儿科脓毒症的复苏。

Prediction of Resuscitation for Pediatric Sepsis from Data Available at Triage.

机构信息

Department of Pediatrics, NYU Grossman School of Medicine, New York.

Department of Emergency Medicine, NYU Grossman School of Medicine, New York.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:1129-1138. eCollection 2021.

Abstract

Pediatric sepsis imposes a significant burden of morbidity and mortality among children. While the speedy application of existing supportive care measures can substantially improve outcomes, further improvements in delivering that care require tools that go beyond recognizing sepsis and towards predicting its development. Machine learning techniques have great potential as predictive tools, but their application to pediatric sepsis has been stymied by several factors, particularly the relative rarity of its occurrence. We propose an alternate approach which focuses on predicting the provision of resuscitative care, rather than sepsis diagnoses or criteria themselves. Using three years of Emergency Department data from a large academic medical center, we developed a boosted tree model that predicts resuscitation within 6 hours of triage, and significantly outperforms existing rule-based sepsis alerts.

摘要

儿科脓毒症给儿童带来了重大的发病和死亡负担。虽然迅速应用现有的支持性护理措施可以显著改善预后,但要进一步提高护理质量,就需要超越识别脓毒症并预测其发展的工具。机器学习技术具有成为预测工具的巨大潜力,但由于多种因素,它们在儿科脓毒症中的应用受到了阻碍,特别是该病症相对罕见。我们提出了一种替代方法,该方法侧重于预测复苏治疗的提供,而不是脓毒症的诊断或标准本身。我们使用来自一家大型学术医疗中心的三年急诊数据,开发了一个增强树模型,可预测分诊后 6 小时内的复苏,并显著优于现有的基于规则的脓毒症警报。

相似文献

1
Prediction of Resuscitation for Pediatric Sepsis from Data Available at Triage.
AMIA Annu Symp Proc. 2022 Feb 21;2021:1129-1138. eCollection 2021.
3
Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage.
JAMA Netw Open. 2019 Jan 4;2(1):e186937. doi: 10.1001/jamanetworkopen.2018.6937.
5
Emergency department triage prediction of clinical outcomes using machine learning models.
Crit Care. 2019 Feb 22;23(1):64. doi: 10.1186/s13054-019-2351-7.
6
Machine learning algorithms for early sepsis detection in the emergency department: A retrospective study.
Int J Med Inform. 2022 Apr;160:104689. doi: 10.1016/j.ijmedinf.2022.104689. Epub 2022 Jan 20.

引用本文的文献

本文引用的文献

1
A Machine Learning-Based Triage Tool for Children With Acute Infection in a Low Resource Setting.
Pediatr Crit Care Med. 2019 Dec;20(12):e524-e530. doi: 10.1097/PCC.0000000000002121.
3
The implementation of an electronic health record: Comparing preparations for Epic in Norway with experiences from the UK and Denmark.
Int J Med Inform. 2019 Sep;129:312-317. doi: 10.1016/j.ijmedinf.2019.06.026. Epub 2019 Jun 26.
4
A clinical decision support system to improve adequate dosing of gentamicin and vancomycin.
Int J Med Inform. 2019 Apr;124:1-5. doi: 10.1016/j.ijmedinf.2019.01.002. Epub 2019 Jan 2.
5
Automating a Manual Sepsis Screening Tool in a Pediatric Emergency Department.
Appl Clin Inform. 2018 Oct;9(4):803-808. doi: 10.1055/s-0038-1675211. Epub 2018 Oct 31.
7
Automated monitoring compared to standard care for the early detection of sepsis in critically ill patients.
Cochrane Database Syst Rev. 2018 Jun 25;6(6):CD012404. doi: 10.1002/14651858.CD012404.pub2.
9
Association of Delayed Antimicrobial Therapy with One-Year Mortality in Pediatric Sepsis.
Shock. 2017 Jul;48(1):29-35. doi: 10.1097/SHK.0000000000000833.
10
Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016.
Intensive Care Med. 2017 Mar;43(3):304-377. doi: 10.1007/s00134-017-4683-6. Epub 2017 Jan 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验