Habets Jeroen G V, Janssen Marcus L F, Duits Annelien A, Sijben Laura C J, Mulders Anne E P, De Greef Bianca, Temel Yasin, Kuijf Mark L, Kubben Pieter L, Herff Christian
Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands.
PeerJ. 2020 Nov 18;8:e10317. doi: 10.7717/peerj.10317. eCollection 2020.
Despite careful patient selection for subthalamic nucleus deep brain stimulation (STN DBS), some Parkinson's disease patients show limited improvement of motor disability. Innovative predictive analysing methods hold potential to develop a tool for clinicians that reliably predicts individual postoperative motor response, by only regarding clinical preoperative variables. The main aim of preoperative prediction would be to improve preoperative patient counselling, expectation management, and postoperative patient satisfaction.
We developed a machine learning logistic regression prediction model which generates probabilities for experiencing weak motor response one year after surgery. The model analyses preoperative variables and is trained on 89 patients using a five-fold cross-validation. Imaging and neurophysiology data are left out intentionally to ensure usability in the preoperative clinical practice. Weak responders ( = 30) were defined as patients who fail to show clinically relevant improvement on Unified Parkinson Disease Rating Scale II, III or IV.
The model predicts weak responders with an average area under the curve of the receiver operating characteristic of 0.79 (standard deviation: 0.08), a true positive rate of 0.80 and a false positive rate of 0.24, and a diagnostic accuracy of 78%. The reported influences of individual preoperative variables are useful for clinical interpretation of the model, but cannot been interpreted separately regardless of the other variables in the model.
The model's diagnostic accuracy confirms the utility of machine learning based motor response prediction based on clinical preoperative variables. After reproduction and validation in a larger and prospective cohort, this prediction model holds potential to support clinicians during preoperative patient counseling.
尽管在选择丘脑底核深部脑刺激(STN DBS)患者时十分谨慎,但仍有一些帕金森病患者的运动功能障碍改善有限。创新的预测分析方法有望为临床医生开发一种工具,仅通过考虑术前临床变量就能可靠地预测个体术后运动反应。术前预测的主要目的是改善术前患者咨询、预期管理和术后患者满意度。
我们开发了一种机器学习逻辑回归预测模型,该模型可生成术后一年运动反应较弱的概率。该模型分析术前变量,并使用五折交叉验证对89名患者进行训练。故意排除影像学和神经生理学数据,以确保其在术前临床实践中的可用性。弱反应者(n = 30)定义为在统一帕金森病评定量表II、III或IV上未显示出临床相关改善的患者。
该模型预测弱反应者的受试者工作特征曲线下平均面积为0.79(标准差:0.08),真阳性率为0.80,假阳性率为0.24,诊断准确率为78%。报告的个体术前变量的影响有助于对模型进行临床解释,但无论模型中的其他变量如何,都不能单独进行解释。
该模型的诊断准确性证实了基于术前临床变量的机器学习运动反应预测的实用性。在更大的前瞻性队列中进行复制和验证后,这种预测模型有望在术前患者咨询过程中为临床医生提供支持。