Suppr超能文献

来自一种隔离性昆虫肠道的植物防御化合物的快速选择性吸收

Rapid and Selective Absorption of Plant Defense Compounds From the Gut of a Sequestering Insect.

作者信息

Yang Zhi-Ling, Seitz Fabian, Grabe Veit, Nietzsche Sandor, Richter Adrian, Reichelt Michael, Beutel Rolf, Beran Franziska

机构信息

Research Group Sequestration and Detoxification in Insects, Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany.

Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany.

出版信息

Front Physiol. 2022 Mar 3;13:846732. doi: 10.3389/fphys.2022.846732. eCollection 2022.

Abstract

Many herbivorous insects exploit defense compounds produced by their host plants for protection against predators. Ingested plant defense compounds are absorbed the gut epithelium and stored in the body, a physiological process that is currently not well understood. Here, we investigated the absorption of plant defense compounds from the gut in the horseradish flea beetle, , a specialist herbivore known to selectively sequester glucosinolates from its brassicaceous host plants. Feeding experiments using a mixture of glucosinolates and other glucosides not found in the host plants showed a rapid and selective uptake of glucosinolates in adult beetles. In addition, we provide evidence that this uptake mainly takes place in the foregut, whereas the endodermal midgut is the normal region of absorption. Absorption the foregut epithelium is surprising as the apical membrane is covered by a chitinous intima. However, we could show that this cuticular layer differs in its structure and overall thickness between and a non-sequestering leaf beetle. In , we observed a thinner cuticle with a less dense chitinous matrix, which might facilitate glucosinolate absorption. Our results show that a selective and rapid uptake of glucosinolates from the anterior region of the gut contributes to the selective sequestration of glucosinolates in

摘要

许多植食性昆虫利用其寄主植物产生的防御化合物来抵御捕食者。摄入的植物防御化合物被肠道上皮吸收并储存在体内,这一生理过程目前尚未得到充分了解。在这里,我们研究了辣根跳甲(一种已知能从其十字花科寄主植物中选择性地隔离硫代葡萄糖苷的专食性植食动物)肠道对植物防御化合物的吸收。使用硫代葡萄糖苷和寄主植物中未发现的其他糖苷混合物进行的喂养实验表明,成年甲虫对硫代葡萄糖苷有快速且选择性的吸收。此外,我们提供的证据表明,这种吸收主要发生在前肠,而内胚层中肠是正常的吸收区域。前肠上皮的吸收令人惊讶,因为顶端膜被一层几丁质内膜覆盖。然而,我们可以表明,这种角质层在辣根跳甲和一种非隔离性叶甲之间的结构和总厚度有所不同。在辣根跳甲中,我们观察到角质层较薄,几丁质基质密度较低,这可能有助于硫代葡萄糖苷的吸收。我们的结果表明,从肠道前部区域对硫代葡萄糖苷的选择性快速吸收有助于硫代葡萄糖苷在……中的选择性隔离

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c7c/8928188/d3d31e28d6be/fphys-13-846732-g001.jpg

相似文献

1
Rapid and Selective Absorption of Plant Defense Compounds From the Gut of a Sequestering Insect.
Front Physiol. 2022 Mar 3;13:846732. doi: 10.3389/fphys.2022.846732. eCollection 2022.
2
Glucosinolate Abundance and Composition in Brassicaceae Influence Sequestration in a Specialist Flea Beetle.
J Chem Ecol. 2020 Feb;46(2):186-197. doi: 10.1007/s10886-020-01144-y. Epub 2020 Jan 17.
3
Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases.
Front Plant Sci. 2021 May 20;12:645030. doi: 10.3389/fpls.2021.645030. eCollection 2021.
4
Sugar transporters enable a leaf beetle to accumulate plant defense compounds.
Nat Commun. 2021 May 11;12(1):2658. doi: 10.1038/s41467-021-22982-8.
5
Different myrosinases activate sequestered glucosinolates in larvae and adults of the horseradish flea beetle.
Insect Biochem Mol Biol. 2023 Dec;163:104040. doi: 10.1016/j.ibmb.2023.104040. Epub 2023 Nov 22.
6
Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7349-54. doi: 10.1073/pnas.1321781111. Epub 2014 May 5.
7
Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system.
Phytochemistry. 2011 Sep;72(13):1566-75. doi: 10.1016/j.phytochem.2011.01.016. Epub 2011 Feb 10.
9
Herbivore Diet Breadth and Host Plant Defense Mediate the Tri-Trophic Effects of Plant Toxins on Multiple Coccinellid Predators.
PLoS One. 2016 May 16;11(5):e0155716. doi: 10.1371/journal.pone.0155716. eCollection 2016.
10
Chemical diversity in Brassica oleracea affects biodiversity of insect herbivores.
Ecology. 2009 Jul;90(7):1863-77. doi: 10.1890/08-0977.1.

引用本文的文献

2
Metabolization and sequestration of plant specialized metabolites in insect herbivores: Current and emerging approaches.
Front Physiol. 2022 Sep 27;13:1001032. doi: 10.3389/fphys.2022.1001032. eCollection 2022.

本文引用的文献

1
Hijacking the Mustard-Oil Bomb: How a Glucosinolate-Sequestering Flea Beetle Copes With Plant Myrosinases.
Front Plant Sci. 2021 May 20;12:645030. doi: 10.3389/fpls.2021.645030. eCollection 2021.
2
Group I CDAs are responsible for a selective CHC-independent cuticular barrier in Locusta migratoria.
Pestic Biochem Physiol. 2021 Jun;175:104854. doi: 10.1016/j.pestbp.2021.104854. Epub 2021 Apr 12.
3
Sugar transporters enable a leaf beetle to accumulate plant defense compounds.
Nat Commun. 2021 May 11;12(1):2658. doi: 10.1038/s41467-021-22982-8.
4
Roles of LmCDA1 and LmCDA2 in cuticle formation in the foregut and hindgut of Locusta migratoria.
Insect Sci. 2021 Oct;28(5):1314-1325. doi: 10.1111/1744-7917.12874. Epub 2020 Nov 4.
5
ABCB transporters in a leaf beetle respond to sequestered plant toxins.
Proc Biol Sci. 2020 Sep 9;287(1934):20201311. doi: 10.1098/rspb.2020.1311. Epub 2020 Sep 2.
6
Molecular mechanisms of insect adaptation to plant secondary compounds.
Curr Opin Insect Sci. 2015 Apr;8:8-14. doi: 10.1016/j.cois.2015.02.004. Epub 2015 Feb 9.
8
Glucosinolate Abundance and Composition in Brassicaceae Influence Sequestration in a Specialist Flea Beetle.
J Chem Ecol. 2020 Feb;46(2):186-197. doi: 10.1007/s10886-020-01144-y. Epub 2020 Jan 17.
9
Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defence.
Mol Plant Pathol. 2020 Mar;21(3):349-359. doi: 10.1111/mpp.12900. Epub 2019 Dec 24.
10
Extracellular nutrient digestion and absorption in the insect gut.
Cell Tissue Res. 2019 Sep;377(3):397-414. doi: 10.1007/s00441-019-03031-9. Epub 2019 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验