Wang Jade Xiaoqing, Li Yimei, Li Xintong, Lu Zhao-Hua
Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, United States.
Department of Linguistics, The Ohio State University, Columbus, OH, United States.
Front Neurosci. 2022 Mar 3;16:846638. doi: 10.3389/fnins.2022.846638. eCollection 2022.
The application of deep learning techniques to the detection and automated classification of Alzheimer's disease (AD) has recently gained considerable attention. The rapid progress in neuroimaging and sequencing techniques has enabled the generation of large-scale imaging genetic data for AD research. In this study, we developed a deep learning approach, IGnet, for automated AD classification using both magnetic resonance imaging (MRI) data and genetic sequencing data. The proposed approach integrates computer vision (CV) and natural language processing (NLP) techniques, with a deep three-dimensional convolutional network (3D CNN) being used to handle the three-dimensional MRI input and a Transformer encoder being used to manage the genetic sequence input. The proposed approach has been applied to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data set. Using baseline MRI scans and selected single-nucleotide polymorphisms on chromosome 19, it achieved a classification accuracy of 83.78% and an area under the receiver operating characteristic curve (AUC-ROC) of 0.924 with the test set. The results demonstrate the great potential of using multi-disciplinary AI approaches to integrate imaging genetic data for the automated classification of AD.
深度学习技术在阿尔茨海默病(AD)检测和自动分类中的应用近来备受关注。神经成像和测序技术的快速发展使得为AD研究生成大规模成像遗传学数据成为可能。在本研究中,我们开发了一种深度学习方法IGnet,用于使用磁共振成像(MRI)数据和基因测序数据进行AD自动分类。所提出的方法集成了计算机视觉(CV)和自然语言处理(NLP)技术,其中深度三维卷积网络(3D CNN)用于处理三维MRI输入,Transformer编码器用于处理基因序列输入。所提出的方法已应用于阿尔茨海默病神经成像计划(ADNI)数据集。使用基线MRI扫描和19号染色体上选定的单核苷酸多态性,在测试集中其分类准确率达到83.78%,受试者操作特征曲线下面积(AUC-ROC)为0.924。结果表明,使用多学科人工智能方法整合成像遗传学数据进行AD自动分类具有巨大潜力。