Suppr超能文献

MAPbBr 单晶中离子漂移与电子电流瞬态动力学之间的耦合

Coupling between Ion Drift and Kinetics of Electronic Current Transients in MAPbBr Single Crystals.

作者信息

García-Batlle Marisé, Mayén Guillén Javier, Chapran Marian, Baussens Oriane, Zaccaro Julien, Verilhac Jean-Marie, Gros-Daillon Eric, Guerrero Antonio, Almora Osbel, Garcia-Belmonte Germà

机构信息

Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain.

Grenoble Alpes University, CEA, LITEN, DTNM, F38000 Grenoble, France.

出版信息

ACS Energy Lett. 2022 Mar 11;7(3):946-951. doi: 10.1021/acsenergylett.1c02578. Epub 2022 Feb 11.

Abstract

The optoelectronic properties of halide perovskite materials have fostered their utilization in many applications. Unravelling their working mechanisms remains challenging because of their mixed ionic-electronic conductive nature. By registering, with high reproducibility, the long-time current transients of a set of single-crystal methylammonium lead tribromide samples, the ion migration process was proved. Sample biasing experiments (ionic drift), with characteristic times exhibiting voltage dependence as ∝ , is interpreted with an ionic migration model obeying a ballistic-like voltage-dependent mobility (BVM) regime of space-charge-limited current. Ionic kinetics effectively modify the long-time electronic current, while the steady-state electronic currents' behavior is nearly ohmic. Using the ionic dynamic doping model (IDD) for the recovering current at zero bias (ion diffusion), the ionic mobility is estimated to be ∼10 cm V s. Our findings suggest that ionic currents are negligible in comparison to the electronic currents; however, they influence them via changes in the charge density profile.

摘要

卤化物钙钛矿材料的光电特性促进了其在许多应用中的利用。由于其混合的离子-电子导电性质,阐明其工作机制仍然具有挑战性。通过以高重现性记录一组单晶甲基溴化铅样品的长时间电流瞬变,证明了离子迁移过程。样品偏置实验(离子漂移),其特征时间表现出与电压的依赖关系为 ∝ ,用服从空间电荷限制电流的弹道式电压依赖迁移率(BVM) regime的离子迁移模型来解释。离子动力学有效地改变了长时间的电子电流,而稳态电子电流的行为几乎是欧姆性的。使用离子动态掺杂模型(IDD)来恢复零偏置下的电流(离子扩散),估计离子迁移率约为10 cm V s。我们的研究结果表明,与电子电流相比,离子电流可以忽略不计;然而,它们通过电荷密度分布的变化影响电子电流。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef04/8922277/67897e59abf7/nz1c02578_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验