Salvador-Morales Carolina, Grodzinski Piotr
Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Maryland 20850, United States.
ACS Nano. 2022 Apr 26;16(4):5062-5084. doi: 10.1021/acsnano.1c10635. Epub 2022 Mar 21.
Over the years, the engineering aspect of nanotechnology has been significantly exploited. Medical intervention strategies have been developed by leveraging existing molecular biology knowledge and combining it with nanotechnology tools to improve outcomes. However, little attention has been paid to harnessing the strengths of nanotechnology as a biological discovery tool. Fundamental understanding of controlling dynamic biological processes at the subcellular level is key to developing personalized therapeutic and diagnostic interventions. Single-cell analyses using intravital microscopy, expansion microscopy, and microfluidic-based platforms have been helping to better understand cell heterogeneity in healthy and diseased cells, a major challenge in oncology. Also, single-cell analysis has revealed critical signaling pathways and biological intracellular components with key biological functions. The physical manipulation enabled by nanotools can allow real-time monitoring of biological changes at a single-cell level by sampling intracellular fluid from the same cell. The formation of intercellular highways by nanotube-like structures has important clinical implications such as metastasis development. The integration of nanomaterials into optical and molecular imaging techniques has rendered valuable morphological, structural, and biological information. Nanoscale imaging unravels mechanisms of temporality by enabling the visualization of nanoscale dynamics never observed or measured between individual cells with standard biological techniques. The exceptional sensitivity of nanozymes, artificial enzymes, make them perfect components of the next-generation mobile diagnostics devices. Here, we highlight these impactful cancer-related biological discoveries enabled by nanotechnology and producing a paradigm shift in cancer research and oncology.
多年来,纳米技术的工程学方面已得到大量应用。通过利用现有的分子生物学知识并将其与纳米技术工具相结合,已开发出医学干预策略以改善治疗效果。然而,人们很少关注利用纳米技术作为生物发现工具的优势。在亚细胞水平上对动态生物过程进行控制的基本理解是开发个性化治疗和诊断干预措施的关键。使用活体显微镜、膨胀显微镜和基于微流控的平台进行的单细胞分析有助于更好地了解健康细胞和患病细胞中的细胞异质性,这是肿瘤学中的一个重大挑战。此外,单细胞分析还揭示了具有关键生物学功能的关键信号通路和细胞内生物成分。纳米工具实现的物理操作可以通过从同一细胞中采样细胞内液,在单细胞水平上实时监测生物变化。类纳米管结构形成的细胞间通道具有重要的临床意义,如转移的发展。将纳米材料整合到光学和分子成像技术中,可以提供有价值的形态、结构和生物学信息。纳米级成像通过实现对标准生物学技术从未观察或测量到的单个细胞之间的纳米级动态的可视化,揭示了时间性机制。纳米酶(人工酶)的卓越灵敏度使其成为下一代移动诊断设备的完美组件。在此,我们重点介绍这些由纳米技术实现的、对癌症相关生物学具有重大影响的发现,它们正在癌症研究和肿瘤学领域引发范式转变。