Fu Rong, Jiang Xiaowan, Yang Yuyan, Wang Chunxia, Zhang Yun, Zhu Yi, Zhang Huimin
Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University, Suzhou, China.
Autophagy. 2022 Nov;18(11):2731-2745. doi: 10.1080/15548627.2022.2047345. Epub 2022 Mar 20.
A variety of disturbances such as starvation, organelle damage, heat stress, hypoxia and pathogen infection can influence the autophagic process. However, how the macroautophagy/autophagy machinery is regulated intrinsically by structural damage of the cell remains largely unknown. In this work, we utilized the epidermis as the model to address this question. Our results showed that structural damage by mechanical wounding exerted proximal inhibitory effect and distant promotional effect on autophagy within the same epidermal cell. By disrupting individual mechanical supporting structures, we found that only damage of the basal extracellular matrix or the underlying muscle cells activated a distinct autophagic response in the epidermis. On the contrary, structural disruption of the epidermal cells at the apical side inhibited autophagy activation caused by different stress factors. Mechanistic studies showed that the basal promotional effect of structural damage on epidermal autophagy was mediated by a mechanotransduction pathway going through the basal hemidesmosome receptor and LET-363/MTOR, while the apical inhibitory effect was mostly carried out by activation of calcium signaling. Elevated autophagy in the epidermis played a detrimental rather than a beneficial role on cell survival against structural damage. The results obtained from these studies will not only help us better understand the pathogenesis of structural damage- and autophagy-related diseases, but also provide insight into more generic rules of autophagy regulation by the structural and mechanical properties of cells across species. : ATG: autophagy related; BLI-1: BLIstered cuticle 1; CeHDs: hemidesmosomes; COL-19: COLlagen 19; DPY-7: DumPY 7; ECM: extracellular matrix; EPG-5: ectopic PGL granules 5; GFP: green fluorescent protein; GIT-1: GIT1 (mammalian G protein-coupled receptor kinase InTeractor 1) homolog; GTL-2: Gon-Two Like 2 (TRP subfamily); HIS-58, HIStone 58; IFB-1: Intermediate Filament, B 1; LET: LEThal; LGG-1: LC3, GABARAP and GATE-16 family 1; MTOR: mechanistic target of rapamycin; MTORC1: MTOR complex 1; MUP-4: MUscle Positioning 4; NLP-29: Neuropeptide-Like Protein 29; PAT: Paralyzed Arrest at Two-fold; PIX-1: PIX (PAK (p21-activated kinase) Interacting eXchange factor) homolog 1; RFP: red fluorescent protein; RNAi: RNA interference; SQST-1: SeQueSTosome related 1; UNC: UNCoordinated; UV: ultraviolet; VAB-10: variable ABnormal morphology 10; WT: wild type.
饥饿、细胞器损伤、热应激、缺氧和病原体感染等多种干扰因素可影响自噬过程。然而,细胞结构损伤如何内在调节巨自噬/自噬机制在很大程度上仍不清楚。在这项研究中,我们以表皮为模型来解决这个问题。我们的结果表明,机械损伤造成的结构损伤对同一表皮细胞内的自噬具有近端抑制作用和远端促进作用。通过破坏单个机械支撑结构,我们发现只有基底细胞外基质或其下方的肌肉细胞损伤才能激活表皮中独特的自噬反应。相反,顶端的表皮细胞结构破坏会抑制不同应激因素引起的自噬激活。机制研究表明,结构损伤对表皮自噬的基底促进作用是通过一条机械转导途径介导的,该途径通过基底半桥粒受体和LET-363/MTOR,而顶端抑制作用主要是通过钙信号的激活来实现的。表皮中自噬的升高对抵抗结构损伤的细胞存活起到了有害而非有益的作用。这些研究结果不仅将帮助我们更好地理解结构损伤和自噬相关疾病的发病机制,还将为跨物种细胞的结构和机械特性对自噬调节的更普遍规律提供见解。:ATG:自噬相关;BLI-1:BLIstered角质层1;CeHDs:半桥粒;COL-19:胶原蛋白19;DPY-7:DumPY 7;ECM:细胞外基质;EPG-5:异位PGL颗粒5;GFP:绿色荧光蛋白;GIT-1:GIT1(哺乳动物G蛋白偶联受体激酶相互作用因子1)同源物;GTL-2:Gon-Two Like 2(TRP亚家族);HIS-58:组蛋白58;IFB-1:中间丝,B 1;LET:致死;LGG-1:LC3、GABARAP和GATE-16家族1;MTOR:雷帕霉素的机制靶点;MTORC1:MTOR复合物1;MUP-4:肌肉定位4;NLP-29:神经肽样蛋白29;PAT:两倍时瘫痪停滞;PIX-1:PIX(PAK(p21激活激酶)相互作用交换因子)同源物1;RFP:红色荧光蛋白;RNAi:RNA干扰;SQST-1:SeQueSTosome相关1;UNC:不协调;UV:紫外线;VAB-10:可变异常形态10;WT:野生型。