Suppr超能文献

自噬与先天免疫:无脊椎动物模式生物的新视角。

Autophagy and innate immunity: Insights from invertebrate model organisms.

机构信息

a Division of Biological Sciences , University of California , San Diego, La Jolla , CA , USA.

b Institute of Basic Medical Sciences , College of Medicine , National Cheng Kung University , Tainan , Taiwan.

出版信息

Autophagy. 2018;14(2):233-242. doi: 10.1080/15548627.2017.1389824. Epub 2018 Feb 17.

Abstract

Macroautophagy/autophagy is a fundamental intracellular degradation process with multiple roles in immunity, including direct elimination of intracellular microorganisms via 'xenophagy.' In this review, we summarize studies from the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans that highlight the roles of autophagy in innate immune responses to viral, bacterial, and fungal pathogens. Research from these genetically tractable invertebrates has uncovered several conserved immunological paradigms, such as direct targeting of intracellular pathogens by xenophagy and regulation of autophagy by pattern recognition receptors in D. melanogaster. Although C. elegans has no known pattern recognition receptors, this organism has been particularly useful in understanding many aspects of innate immunity. Indeed, work in C. elegans was the first to show xenophagic targeting of microsporidia, a fungal pathogen that infects all animals, and to identify TFEB/HLH-30, a helix-loop-helix transcription factor, as an evolutionarily conserved regulator of autophagy gene expression and host tolerance. Studies in C. elegans have also highlighted the more recently appreciated relationship between autophagy and tolerance to extracellular pathogens. Studies of simple, short-lived invertebrates such as flies and worms will continue to provide valuable insights into the molecular mechanisms by which autophagy and immunity pathways intersect and their contribution to organismal survival. Abbreviations Atg autophagy related BECN1 Beclin 1 CALCOCO2 calcium binding and coiled-coil domain 2 Cry5B crystal toxin 5B Daf abnormal dauer formation DKF-1 D kinase family-1 EPG-7 Ectopic P Granules-7 FuDR fluorodeoxyuridine GFP green fluorescent protein HLH-30 Helix Loop Helix-30 Imd immune deficiency ins-18 INSulin related-18; LET-363, LEThal-363 lgg-1 LC3, GABARAP and GATE-16 family-1 MAPK mitogen-activated protein kinase MATH the meprin and TRAF homology MTOR mechanistic target of rapamycin NBR1 neighbor of BRCA1 gene 1 NFKB nuclear factor of kappa light polypeptide gene enhancer in B cells NOD nucleotide-binding oligomerization domain containing OPTN optineurin PAMPs pathogen-associated molecular patterns Park2 Parkinson disease (autosomal recessive, juvenile) 2, parkin pdr-1 Parkinson disease related PFTs pore-forming toxins PGRP peptidoglycan-recognition proteins PIK3C3 phosphatidylinositol 3- kinase catalytic subunit type 3 pink-1 PINK (PTEN-I induced kinase) homolog PRKD protein kinase D; PLC, phospholipase C PRKN parkin RBR E3 ubiquitin protein ligase PRRs pattern-recognition receptors PtdIns3P phosphatidylinositol-3-phosphate rab-5 RAB family-5 RB1CC1 RB1-inducible coiled-coil 1 RNAi RNA interference sqst SeQueSTosome related SQSTM1 sequestosome 1 TBK1 TANK-binding kinase 1 TFEB transcription factor EB TGFB/TGF-β transforming growth factor beta TLRs toll-like receptors unc-51 UNCoordinated-51 VPS vacuolar protein sorting; VSV, vesicular stomatitis virus VSV-G VSV surface glycoprotein G Wipi2 WD repeat domain, phosphoinositide interacting 2.

摘要

自噬是一种基本的细胞内降解过程,在免疫中具有多种作用,包括通过“异噬”直接消除细胞内微生物。在这篇综述中,我们总结了来自果蝇和秀丽隐杆线虫的研究,这些研究强调了自噬在病毒、细菌和真菌病原体的先天免疫反应中的作用。这些遗传上可操作的无脊椎动物的研究揭示了几个保守的免疫范例,例如异噬直接靶向细胞内病原体和模式识别受体在果蝇中调节自噬。虽然秀丽隐杆线虫没有已知的模式识别受体,但这种生物在理解先天免疫的许多方面特别有用。事实上,秀丽隐杆线虫中的研究首次表明了微孢子虫的异噬靶向,微孢子虫是一种感染所有动物的真菌病原体,并鉴定了 TFEB/HLH-30,一种螺旋环螺旋转录因子,作为自噬基因表达和宿主耐受性的进化保守调节因子。秀丽隐杆线虫的研究还强调了自噬和对细胞外病原体的耐受性之间最近被认识到的关系。对简单、寿命短的无脊椎动物(如苍蝇和蠕虫)的研究将继续为自噬和免疫途径相互作用的分子机制及其对生物体生存的贡献提供有价值的见解。缩写词 Atg 自噬相关 Beclin 1 Beclin 1 CALCOCO2 钙结合和卷曲螺旋域 2 Cry5B 晶体毒素 5B Daf 异常持久形成 DKF-1 D 激酶家族-1 EPG-7 异位 P 颗粒-7 FuDR 氟脱氧尿苷 GFP 绿色荧光蛋白 HLH-30 螺旋环螺旋-30 Imd 免疫缺陷 ins-18 INSulin 相关-18;LET-363,LEThal-363 lgg-1 LC3、GABARAP 和 GATE-16 家族-1 MAPK 丝裂原活化蛋白激酶 MATH 髓过氧化物酶和 TRAF 同源物 MTOR 雷帕霉素的作用靶点 NBR1 乳腺癌 1 基因的邻居 NFKB 核因子 kappa 轻多肽基因增强子 B 细胞 NOD 核苷酸结合寡聚化结构域包含 OPTN optineurin PAMPs 病原体相关分子模式 Park2 帕金森病(常染色体隐性,青少年) 2,parkin pdr-1 Parkinson 病相关 PFTs 孔形成毒素 PGRP 肽聚糖识别蛋白 PIK3C3 磷脂酰肌醇 3-激酶催化亚单位 3 pink-1 PINK(PTEN 诱导的激酶)同源物 PRKD 蛋白激酶 D;PLC,磷脂酶 C PRKN parkin RBR E3 泛素蛋白连接酶 PRRs 模式识别受体 PtdIns3P 磷脂酰肌醇-3-磷酸 rab-5 RAB 家族-5 RB1CC1 RB1 诱导的卷曲螺旋 1 RNAi RNA 干扰 sqst SeQueSTosome 相关 SQSTM1 sequestosome 1 TBK1 TANK 结合激酶 1 TFEB 转录因子 EB TGFB/TGF-β 转化生长因子 beta TLRs toll 样受体 unc-51 UNCoordinated-51 VPS 液泡蛋白分选;VSV,水疱性口炎病毒 VSV-G VSV 表面糖蛋白 G Wipi2 WD 重复域、磷酸肌醇相互作用 2

相似文献

1
Autophagy and innate immunity: Insights from invertebrate model organisms.
Autophagy. 2018;14(2):233-242. doi: 10.1080/15548627.2017.1389824. Epub 2018 Feb 17.
2
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
3
Emerging views of mitophagy in immunity and autoimmune diseases.
Autophagy. 2020 Jan;16(1):3-17. doi: 10.1080/15548627.2019.1603547. Epub 2019 Apr 21.
4
The exploitation of host autophagy and ubiquitin machinery by in shaping immune responses and host defense during infection.
Autophagy. 2023 Jan;19(1):3-23. doi: 10.1080/15548627.2021.2021495. Epub 2022 Jan 9.
6
Multifaceted roles of TAX1BP1 in autophagy.
Autophagy. 2023 Jan;19(1):44-53. doi: 10.1080/15548627.2022.2070331. Epub 2022 May 9.
7
Emerging views of OPTN (optineurin) function in the autophagic process associated with disease.
Autophagy. 2022 Jan;18(1):73-85. doi: 10.1080/15548627.2021.1908722. Epub 2021 Apr 13.
9
Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
Prog Neurobiol. 2013 Jul-Aug;106-107:33-54. doi: 10.1016/j.pneurobio.2013.06.002. Epub 2013 Jul 1.
10
Autophagy in the physiological endometrium and cancer.
Autophagy. 2021 May;17(5):1077-1095. doi: 10.1080/15548627.2020.1752548. Epub 2020 May 13.

引用本文的文献

1
Fungi and cancer: unveiling the complex role of fungal infections in tumor biology and therapeutic resistance.
Front Cell Infect Microbiol. 2025 Jun 10;15:1596688. doi: 10.3389/fcimb.2025.1596688. eCollection 2025.
3
Conserved components of the macroautophagy machinery in Caenorhabditis elegans.
Genetics. 2025 Apr 17;229(4). doi: 10.1093/genetics/iyaf007.
4
Understanding the role of trehalose in interactions between and .
Front Cell Infect Microbiol. 2025 Mar 18;15:1547873. doi: 10.3389/fcimb.2025.1547873. eCollection 2025.
10
HLH-30/TFEB mediates sexual dimorphism in immunity in .
Autophagy. 2025 Feb;21(2):283-297. doi: 10.1080/15548627.2024.2375779. Epub 2024 Jul 20.

本文引用的文献

1
Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine.
Science. 2017 Sep 8;357(6355):1047-1052. doi: 10.1126/science.aal4677. Epub 2017 Jul 27.
2
Viral Replication Complexes Are Targeted by LC3-Guided Interferon-Inducible GTPases.
Cell Host Microbe. 2017 Jul 12;22(1):74-85.e7. doi: 10.1016/j.chom.2017.06.005. Epub 2017 Jun 29.
3
Complement-Related Regulates Autophagy in Neighboring Cells.
Cell. 2017 Jun 29;170(1):158-171.e8. doi: 10.1016/j.cell.2017.06.018.
4
Autophagy: machinery and regulation.
Microb Cell. 2016 Dec 1;3(12):588-596. doi: 10.15698/mic2016.12.546.
5
Autophagy: one more Nobel Prize for yeast.
Microb Cell. 2016 Dec 5;3(12):579-581. doi: 10.15698/mic2016.12.544.
6
Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease.
Adv Med Sci. 2017 Mar;62(1):1-16. doi: 10.1016/j.advms.2016.09.001. Epub 2017 Jan 23.
7
9
C. elegans midbodies are released, phagocytosed and undergo LC3-dependent degradation independent of macroautophagy.
J Cell Sci. 2016 Oct 15;129(20):3721-3731. doi: 10.1242/jcs.190223. Epub 2016 Aug 25.
10
Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens.
J Mol Biol. 2016 Aug 28;428(17):3387-98. doi: 10.1016/j.jmb.2016.07.007. Epub 2016 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验