Suppr超能文献

转录组分析 Rhodococcus aetherivorans BCP1 对无机砷氧阴离子的双重响应。

Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions.

机构信息

Department of Pharmacy and Biotechnology, University of Bolognagrid.6292.f, Bologna, Italy.

Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.

出版信息

Appl Environ Microbiol. 2022 Apr 12;88(7):e0220921. doi: 10.1128/aem.02209-21. Epub 2022 Mar 21.

Abstract

Bacterial strains belonging to the genus are able to degrade various toxic organic compounds and tolerate high concentrations of metal(loid)s. We have previously shown that Rhodococcus aetherivorans BCP1 is resistant to various levels of the two arsenic inorganic species, arsenite [As(III)] and arsenate [As(V)]. However, while arsenite showed toxic effects at concentrations as low as 5 mM, arsenate at 30 mM boosted the growth rate of BCP1 cells and was toxic only at concentrations of >100 mM. Since such behavior could be linked to peculiar aspects of its metabolism, the transcriptomic analysis of BCP1 cells exposed to 5 mM As(III) and 30 mM As(V) was performed in this work. The aim was to clarify the mechanisms underlying the arsenic stress response of the two growth phenotypes in the presence of the two different oxyanions. The results revealed that As(III) induced higher activity of reactive oxygen species (ROS)-scavenging enzymes than As(V) in relation to the expression of enzymes involved in cellular damage recovery and redox buffers/cofactors (ergothioneine, mycofactocin, and mycothiol). Further, As(III) downregulated pathways related to cell division, while both oxyanions downregulated genes involved in glycolysis. Notably, As(V) induced the expression of enzymes participating in the synthesis of metallophores and rearranged the central and energetic metabolism, also inducing alternative pathways for ATP synthesis and glucose consumption. This study, in providing transcriptomic data on exposed to arsenic oxyanions, sheds some light on the plasticity of the rhodococcal response to arsenic stress, which may be important for the improvement of biotechnological applications. Members of the genus show high metabolic versatility and the ability to tolerate/resist numerous stress conditions, including toxic metals. BCP1 is able to tolerate high concentrations of the two inorganic arsenic oxyanions, arsenite [As(III)] and arsenate [As(V)]. Despite the fact that BCP1 intracellularly converts As(V) into As(III), this strain responds very differently to the presence of these two oxyanions in terms of cell growth and toxic effects. Indeed, while As(III) is highly toxic, exposure to specific concentrations of As(V) seems to boost cell growth. In this work, we investigated the transcriptomic response, ATP synthesis, glucose consumption, and HO degradation in BCP1 cells exposed to As(III) and As(V), inducing two different growth phenotypes. Our results give an overview of the transcriptional rearrangements associated with the dual response of BCP1 to the two oxyanions and provide novel insights into the energetic metabolism of under arsenic stress.

摘要

属于 属的细菌菌株能够降解各种有毒有机化合物,并耐受高浓度的金属(类)。我们之前已经表明,Rhodococcus aetherivorans BCP1 能够抵抗两种无机砷物种亚砷酸盐 [As(III)] 和砷酸盐 [As(V)] 的不同水平。然而,尽管亚砷酸盐在低至 5mM 的浓度下表现出毒性作用,但在 30mM 的砷酸盐浓度下会促进 BCP1 细胞的生长速率,并且仅在 >100mM 的浓度下才具有毒性。由于这种行为可能与代谢的特殊方面有关,因此在这项工作中对暴露于 5mM As(III) 和 30mM As(V)的 BCP1 细胞进行了转录组分析。目的是阐明在存在两种不同的含氧阴离子时,两种生长表型的砷应激反应的机制。结果表明,与参与细胞损伤恢复和氧化还原缓冲剂/辅因子(麦硫因、真菌菌素和真菌硫醇)的酶的表达相比,As(III)诱导的活性氧 (ROS) 清除酶的活性高于 As(V)。此外,As(III)下调了与细胞分裂有关的途径,而两种含氧阴离子都下调了参与糖酵解的基因。值得注意的是,As(V)诱导了参与金属载体合成的酶的表达,并重新排列了中心和能量代谢,还诱导了用于 ATP 合成和葡萄糖消耗的替代途径。这项研究提供了关于暴露于砷含氧阴离子的 转录组数据,阐明了 Rhodococcus 对砷应激的反应的可塑性,这对于生物技术应用的改进可能很重要。 属的成员表现出高度的代谢多功能性和耐受/抵抗多种应激条件的能力,包括有毒金属。BCP1 能够耐受两种无机砷含氧阴离子,亚砷酸盐 [As(III)] 和砷酸盐 [As(V)] 的高浓度。尽管 BCP1 在细胞内将 As(V)转化为 As(III),但就细胞生长和毒性作用而言,该菌株对这两种含氧阴离子的存在反应非常不同。事实上,虽然 As(III) 具有很高的毒性,但暴露于特定浓度的 As(V)似乎会促进细胞生长。在这项工作中,我们研究了暴露于 As(III)和 As(V)的 BCP1 细胞的转录组反应、ATP 合成、葡萄糖消耗和 HO 降解,诱导了两种不同的生长表型。我们的结果概述了与 BCP1 对两种含氧阴离子的双重反应相关的转录重排,并提供了在砷应激下 能量代谢的新见解。

相似文献

1
Transcriptomic Analysis of the Dual Response of Rhodococcus aetherivorans BCP1 to Inorganic Arsenic Oxyanions.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0220921. doi: 10.1128/aem.02209-21. Epub 2022 Mar 21.
2
Identification of Resistance Genes and Response to Arsenic in BCP1.
Front Microbiol. 2019 May 7;10:888. doi: 10.3389/fmicb.2019.00888. eCollection 2019.
4
Aerobic Growth of BCP1 Using Selected Naphthenic Acids as the Sole Carbon and Energy Sources.
Front Microbiol. 2018 Apr 12;9:672. doi: 10.3389/fmicb.2018.00672. eCollection 2018.
5
Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7.
Res Microbiol. 2016 Nov-Dec;167(9-10):766-773. doi: 10.1016/j.resmic.2016.06.008. Epub 2016 Jul 7.
10
The Arsenic Detoxification System in Corynebacteria: Basis and Application for Bioremediation and Redox Control.
Adv Appl Microbiol. 2017;99:103-137. doi: 10.1016/bs.aambs.2017.01.001. Epub 2017 Mar 6.

引用本文的文献

本文引用的文献

1
Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes.
Folia Microbiol (Praha). 2021 Oct;66(5):701-713. doi: 10.1007/s12223-021-00892-y. Epub 2021 Jul 3.
2
antiSMASH 6.0: improving cluster detection and comparison capabilities.
Nucleic Acids Res. 2021 Jul 2;49(W1):W29-W35. doi: 10.1093/nar/gkab335.
3
Stress response in Rhodococcus strains.
Biotechnol Adv. 2021 Dec;53:107698. doi: 10.1016/j.biotechadv.2021.107698. Epub 2021 Jan 28.
4
Isolation and characterization of arsenic-binding siderophores from Rhodococcus erythropolis S43: role of heterobactin B and other heterobactin variants.
Appl Microbiol Biotechnol. 2021 Feb;105(4):1731-1744. doi: 10.1007/s00253-021-11123-2. Epub 2021 Jan 29.
5
Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli.
Metab Eng. 2021 Mar;64:26-40. doi: 10.1016/j.ymben.2021.01.005. Epub 2021 Jan 16.
7
Structure elucidation of the redox cofactor mycofactocin reveals oligo-glycosylation by MftF.
Chem Sci. 2020 Apr 23;11(20):5182-5190. doi: 10.1039/d0sc01172j. eCollection 2020 May 28.
8
Biotechnology of Rhodococcus for the production of valuable compounds.
Appl Microbiol Biotechnol. 2020 Oct;104(20):8567-8594. doi: 10.1007/s00253-020-10861-z. Epub 2020 Sep 12.
10
The biology of ergothioneine, an antioxidant nutraceutical.
Nutr Res Rev. 2020 Dec;33(2):190-217. doi: 10.1017/S0954422419000301. Epub 2020 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验