Microbial Biochemistry Laboratory, Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
Department of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.
N Biotechnol. 2018 Mar 25;41:1-8. doi: 10.1016/j.nbt.2017.11.002. Epub 2017 Nov 21.
The wide anthropogenic use of selenium compounds represents the major source of selenium pollution worldwide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO with a Minimal Inhibitory Concentration (MIC) of 500mM. The bioconversion of SeO was evaluated considering two different physiological states of the BCP1 strain, i.e. unconditioned and/or conditioned cells, which correspond to cells exposed for the first time or after re-inoculation in fresh medium to either 0.5 or 2mM of NaSeO, respectively. SeO bioconversion was higher for conditioned grown cells compared to the unconditioned ones. Selenium nanostructures appeared polydisperse and not aggregated, as detected by electron microscopy, being embedded in an organic coating likely responsible for their stability, as suggested by the physical-chemical characterization. The production of smaller and/or larger SeNPs was influenced by the initial concentration of provided precursor, which resulted in the growth of longer and/or shorter SeNRs, respectively. The strong ability to tolerate high SeO concentrations coupled with SeNP and SeNR biosynthesis highlights promising new applications of Rhodococcus aetherivorans BCP1 as cell factory to produce stable Se-nanostructures, whose suitability might be exploited for biotechnology purposes.
硒化合物的广泛人为使用是全球硒污染的主要来源,造成了环境问题和健康隐患。由于微生物具有解毒有毒金属/类金属污染环境的能力,并能生产纳米材料,基于微生物的金属去除/回收策略受到了越来越多的关注。本研究调查了好气生长放线菌 Rhodococcus aetherivorans BCP1 对亚硒酸盐(SeO )的耐受性和生物转化能力,以及其生产硒纳米颗粒和纳米棒(SeNPs 和 SeNRs)的能力。BCP1 菌株对 SeO 具有很高的耐受性,最小抑菌浓度(MIC)为 500mM。考虑到 BCP1 菌株的两种不同生理状态,即未经处理和/或经处理的细胞,评估了 SeO 的生物转化,未经处理的细胞是指首次暴露于 SeO 或在新鲜培养基中再接种时分别暴露于 0.5 或 2mM 的 NaSeO 的细胞,经处理的细胞是指细胞。与未经处理的细胞相比,经处理的生长细胞的 SeO 生物转化率更高。通过电子显微镜检测到,硒纳米结构呈现出多分散性且未聚集,嵌入在有机涂层中,这可能是由于其稳定性,如物理化学特性所表明的。较小和/或较大的 SeNPs 的生产受提供前体的初始浓度的影响,分别导致更长和/或更短的 SeNRs 的生长。高浓度 SeO 耐受性强,同时合成 SeNP 和 SeNR,这突出了 Rhodococcus aetherivorans BCP1 作为细胞工厂生产稳定硒纳米结构的有前途的新应用,其适宜性可能被用于生物技术目的。