Chmiel Francis P, Burns Dan K, Pickering John Brian, Blythin Alison, Wilkinson Thomas Ma, Boniface Michael J
School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom.
my mHealth Limited, Bournemouth, United Kingdom.
JMIR Med Inform. 2022 Mar 21;10(3):e26499. doi: 10.2196/26499.
Self-reporting digital apps provide a way of remotely monitoring and managing patients with chronic conditions in the community. Leveraging the data collected by these apps in prognostic models could provide increased personalization of care and reduce the burden of care for people who live with chronic conditions. This study evaluated the predictive ability of prognostic models for the prediction of acute exacerbation events in people with chronic obstructive pulmonary disease by using data self-reported to a digital health app.
The aim of this study was to evaluate if data self-reported to a digital health app can be used to predict acute exacerbation events in the near future.
This is a retrospective study evaluating the use of symptom and chronic obstructive pulmonary disease assessment test data self-reported to a digital health app (myCOPD) in predicting acute exacerbation events. We include data from 2374 patients who made 68,139 self-reports. We evaluated the degree to which the different variables self-reported to the app are predictive of exacerbation events and developed both heuristic and machine learning models to predict whether the patient will report an exacerbation event within 3 days of self-reporting to the app. The model's predictive ability was evaluated based on self-reports from an independent set of patients.
Users self-reported symptoms, and standard chronic obstructive pulmonary disease assessment tests displayed correlation with future exacerbation events. Both a baseline model (area under the receiver operating characteristic curve [AUROC] 0.655, 95% CI 0.689-0.676) and a machine learning model (AUROC 0.727, 95% CI 0.720-0.735) showed moderate ability in predicting exacerbation events, occurring within 3 days of a given self-report. Although the baseline model obtained a fixed sensitivity and specificity of 0.551 (95% CI 0.508-0.596) and 0.759 (95% CI 0.752-0.767) respectively, the sensitivity and specificity of the machine learning model can be tuned by dichotomizing the continuous predictions it provides with different thresholds.
Data self-reported to health care apps designed to remotely monitor patients with chronic obstructive pulmonary disease can be used to predict acute exacerbation events with moderate performance. This could increase personalization of care by allowing preemptive action to be taken to mitigate the risk of future exacerbation events.
自我报告数字应用程序提供了一种在社区远程监测和管理慢性病患者的方法。在预后模型中利用这些应用程序收集的数据,可以提高护理的个性化程度,并减轻慢性病患者的护理负担。本研究通过使用自我报告给数字健康应用程序的数据,评估了预后模型对慢性阻塞性肺疾病患者急性加重事件的预测能力。
本研究的目的是评估自我报告给数字健康应用程序的数据是否可用于预测近期的急性加重事件。
这是一项回顾性研究,评估自我报告给数字健康应用程序(myCOPD)的症状和慢性阻塞性肺疾病评估测试数据在预测急性加重事件中的应用。我们纳入了2374名患者的68139份自我报告数据。我们评估了应用程序中自我报告的不同变量对加重事件的预测程度,并开发了启发式和机器学习模型,以预测患者在向应用程序自我报告后3天内是否会报告加重事件。基于一组独立患者的自我报告评估模型的预测能力。
用户自我报告的症状和标准慢性阻塞性肺疾病评估测试与未来的加重事件显示出相关性。基线模型(受试者工作特征曲线下面积[AUROC]为0.655,95%CI为0.689-0.676)和机器学习模型(AUROC为0.727,95%CI为0.720-0.735)在预测给定自我报告后3天内发生的加重事件方面均显示出中等能力。虽然基线模型分别获得了固定的灵敏度和特异度,分别为0.551(95%CI为0.508-0.596)和0.759(CI为0.752-0.767),但机器学习模型的灵敏度和特异度可以通过用不同阈值对其提供的连续预测进行二分法来调整。
自我报告给旨在远程监测慢性阻塞性肺疾病患者的医疗保健应用程序的数据可用于以中等性能预测急性加重事件。这可以通过采取先发制人的行动来减轻未来加重事件的风险,从而提高护理的个性化程度。