Suppr超能文献

基于吸气和呼气胸部CT图像的自动度量图神经网络对慢性阻塞性肺疾病急性加重的预测

Acute exacerbation prediction of COPD based on Auto-metric graph neural network with inspiratory and expiratory chest CT images.

作者信息

Wang Shicong, Li Wei, Zeng Nanrong, Xu Jiaxuan, Yang Yingjian, Deng Xingguang, Chen Ziran, Duan Wenxin, Liu Yang, Guo Yingwei, Chen Rongchang, Kang Yan

机构信息

College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China.

School of Applied Technology, Shenzhen University, Shenzhen 518060, China.

出版信息

Heliyon. 2024 Mar 29;10(7):e28724. doi: 10.1016/j.heliyon.2024.e28724. eCollection 2024 Apr 15.

Abstract

Chronic obstructive pulmonary disease (COPD) is a widely prevalent disease with significant mortality and disability rates and has become the third leading cause of death globally. Patients with acute exacerbation of COPD (AECOPD) often substantially suffer deterioration and death. Therefore, COPD patients deserve special consideration regarding treatment in this fragile population for pre-clinical health management. Based on the above, this paper proposes an AECOPD prediction model based on the Auto-Metric Graph Neural Network (AMGNN) using inspiratory and expiratory chest low-dose CT images. This study was approved by the ethics committee in the First Affiliated Hospital of Guangzhou Medical University. Subsequently, 202 COPD patients with inspiratory and expiratory chest CT Images and their annual number of AECOPD were collected after the exclusion. First, the inspiratory and expiratory lung parenchyma images of the 202 COPD patients are extracted using a trained ResU-Net. Then, inspiratory and expiratory lung and features are extracted from the 202 inspiratory and expiratory lung parenchyma images by Pyradiomics and pre-trained Med3D (a heterogeneous 3D network), respectively. Last, and features are combined and then further selected by the Lasso algorithm and generalized linear model for determining node features and risk factors of AMGNN, and then the AECOPD prediction model is established. Compared to related models, the proposed model performs best, achieving an accuracy of 0.944, precision of 0.950, F1-score of 0.944, ad area under the curve of 0.965. Therefore, it is concluded that our model may become an effective tool for AECOPD prediction.

摘要

慢性阻塞性肺疾病(COPD)是一种广泛流行的疾病,死亡率和致残率都很高,已成为全球第三大死因。慢性阻塞性肺疾病急性加重(AECOPD)患者常常会出现病情严重恶化甚至死亡。因此,在这一脆弱人群的临床前健康管理中,COPD患者的治疗值得特别关注。基于此,本文提出了一种基于自动度量图神经网络(AMGNN)的AECOPD预测模型,该模型使用吸气和呼气胸部低剂量CT图像。本研究经广州医科大学附属第一医院伦理委员会批准。随后,在排除相关因素后,收集了202例有吸气和呼气胸部CT图像的COPD患者及其每年的AECOPD发作次数。首先,使用经过训练的ResU-Net提取202例COPD患者的吸气和呼气肺实质图像。然后,分别通过Pyradiomics和预训练的Med3D(一种异构3D网络)从202幅吸气和呼气肺实质图像中提取吸气和呼气肺特征。最后,将这些特征进行组合,再通过套索算法和广义线性模型进一步选择,以确定AMGNN的节点特征和风险因素,进而建立AECOPD预测模型。与相关模型相比,所提出的模型表现最佳,准确率达到0.944,精确率为0.950,F1分数为0.944,曲线下面积为0.965。因此,可以得出结论,我们的模型可能成为AECOPD预测的有效工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10ca/11004525/22c2bf03b3c4/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验