Translational Molecular Imaging, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany.
Molecular Imaging, Leibniz-Forschungs-Institut für Molekulare Pharmakologie (FMP), Berlin, Germany.
Phys Chem Chem Phys. 2022 May 25;24(20):12126-12135. doi: 10.1039/d2cp01099b.
A serious limitation of high resolution Xe chemical exchange saturation transfer (CEST) NMR spectroscopy for comparing competitive host-guest interactions from different samples is the long acquisition time due to step-wise encoding of the chemical shift dimension. A method of optimized use of Xe spin magnetization to enable the accelerated and simultaneous acquisition of CEST spectra from multiple samples or regions in a setup is described. The method is applied to investigate the host-guest system of commercially available cucurbit[7]uril (CB7) and xenon with competing guests: -1,4-bis(aminomethyl)cyclohexane, cadaverine, and putrescine. Interactions with the different guests prove that the observed CEST signal is from a CB6 impurity and that CB7 itself does not produce a CEST signal. Instead, rapid interactions between xenon and CB7 manifest in the spectrum as a broad saturation response that could be suppressed by -1,4-bis(aminomethyl)cyclohexane. This guest prevents interactions at the CB7 portals. The suggested method represents a type of spectroscopic imaging that is capable of capturing the exchange kinetics information of systems that otherwise suffer from shortened times and yields multiple spectra for comparing exchange conditions with a reduction of >95% in acquisition time. The spectral quality is sufficient to perform quantitative analysis and quantifications relative to a CB6 standard as well as relative to a known blocker concentration (putrescine) that both reveal an unexpectedly high CB6 impurity of 8%.
高分辨率 Xe 化学交换饱和传递(CEST)NMR 光谱学在比较来自不同样品的竞争性主体 - 客体相互作用方面存在一个严重的局限性,这是由于化学位移维度的逐步编码导致采集时间过长。本文描述了一种优化利用 Xe 自旋磁化来实现从多个样品或多个区域同时加速采集 CEST 谱的方法。该方法应用于研究市售葫芦[7]脲(CB7)和氙气与竞争性客体的主客体体系:-1,4-双(氨甲基)环己烷、尸胺和腐胺。与不同客体的相互作用证明,观察到的 CEST 信号来自 CB6 杂质,而 CB7 本身不会产生 CEST 信号。相反,氙气和 CB7 之间的快速相互作用在光谱中表现为宽的饱和响应,这可以通过 -1,4-双(氨甲基)环己烷来抑制。这种客体阻止了 CB7 门户处的相互作用。该方法代表了一种光谱成像类型,能够捕获否则由于时间缩短而受到影响的系统的交换动力学信息,并在采集时间减少>95%的情况下获得多个光谱来比较交换条件。光谱质量足以进行定量分析和相对 CB6 标准以及相对已知阻断剂浓度(腐胺)的定量分析,这两者都显示出出人意料的高 CB6 杂质含量为 8%。