Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
Anal Chem. 2012 Nov 20;84(22):9935-41. doi: 10.1021/ac302347y. Epub 2012 Nov 6.
Hyperpolarized (129)Xe chemical exchange saturation transfer ((129)Xe Hyper-CEST) NMR is a powerful technique for the ultrasensitive, indirect detection of Xe host molecules (e.g., cryptophane-A). Irradiation at the appropriate Xe-cryptophane resonant radio frequency results in relaxation of the bound hyperpolarized (129)Xe and rapid accumulation of depolarized (129)Xe in bulk solution. The cryptophane effectively "catalyzes" this process by providing a unique molecular environment for spin depolarization to occur, while allowing xenon exchange with the bulk solution during the hyperpolarized lifetime (T(1) ≈ 1 min). Following this scheme, a triacetic acid cryptophane-A derivative (TAAC) was indirectly detected at 1.4 picomolar concentration at 320 K in aqueous solution, which is the record for a single-unit xenon host. To investigate this sensitivity enhancement, the xenon binding kinetics of TAAC in water was studied by NMR exchange lifetime measurement. At 297 K, k(on) ≈ 1.5 × 10(6) M(-1) s(-1) and k(off) = 45 s(-1), which represent the fastest Xe association and dissociation rates measured for a high-affinity, water-soluble xenon host molecule near rt. NMR line width measurements provided similar exchange rates at rt, which we assign to solvent-Xe exchange in TAAC. At 320 K, k(off) was estimated to be 1.1 × 10(3) s(-1). In Hyper-CEST NMR experiments, the rate of (129)Xe depolarization achieved by 14 pM TAAC in the presence of radio frequency (RF) pulses was calculated to be 0.17 μM·s(-1). On a per cryptophane basis, this equates to 1.2 × 10(4)(129)Xe atoms s(-1) (or 4.6 × 10(4) Xe atoms s(-1), all Xe isotopes), which is more than an order of magnitude faster than k(off), the directly measurable Xe-TAAC exchange rate. This compels us to consider multiple Xe exchange processes for cryptophane-mediated bulk (129)Xe depolarization, which provide at least 10(7)-fold sensitivity enhancements over directly detected hyperpolarized (129)Xe NMR signals.
超极化 (129)Xe 化学交换饱和转移 ((129)Xe Hyper-CEST) NMR 是一种强大的技术,可用于超灵敏、间接检测 Xe 主体分子(例如 cryptophane-A)。在适当的 Xe-cryptophane 共振射频照射下,结合的超极化 (129)Xe 弛豫,并且在 bulk solution 中快速积累去极化的 (129)Xe。cryptophane 通过提供独特的分子环境来有效“催化”这个过程,从而使自旋去极化发生,同时在超极化寿命 (T(1) ≈ 1 min) 期间允许 xenon 与 bulk solution 交换。根据该方案,在 320 K 的水溶液中以 1.4 picomolar 的浓度间接检测到三乙酸 cryptophane-A 衍生物 (TAAC),这是单单位 xenon 主体的记录。为了研究这种灵敏度增强,通过 NMR 交换寿命测量研究了 TAAC 在水中的 xenon 结合动力学。在 297 K 时,k(on) ≈ 1.5 × 10(6) M(-1) s(-1) 和 k(off) = 45 s(-1),这代表了在 rt 附近测量的具有高亲和力的水溶性 xenon 主体分子的最快 Xe 缔合和离解速率。NMR 线宽测量在 rt 时提供了类似的交换速率,我们将其归因于 TAAC 中的溶剂-Xe 交换。在 320 K 时,估计 k(off)为 1.1 × 10(3) s(-1)。在 Hyper-CEST NMR 实验中,在射频 (RF) 脉冲存在下,计算出 14 pM TAAC 实现的 (129)Xe 去极化速率为 0.17 μM·s(-1)。基于每个 cryptophane,这相当于 1.2 × 10(4)(129)Xe 原子 s(-1)(或 4.6 × 10(4) Xe 原子 s(-1),所有 Xe 同位素),比直接测量的 Xe-TAAC 交换速率快一个数量级以上。这迫使我们考虑 cryptophane 介导的 bulk (129)Xe 去极化的多个 Xe 交换过程,这些过程提供了超过直接检测的超极化 (129)Xe NMR 信号 10(7) 倍的灵敏度增强。