Suppr超能文献

在直接注入氙自旋极化器中观察和防止铷原子逃逸,该极化器经过优化可用于高分辨率的超 CEST(利用超极化核的化学交换饱和转移)NMR。

Observing and preventing rubidium runaway in a direct-infusion xenon-spin hyperpolarizer optimized for high-resolution hyper-CEST (chemical exchange saturation transfer using hyperpolarized nuclei) NMR.

机构信息

ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany.

出版信息

J Chem Phys. 2014 Feb 28;140(8):084203. doi: 10.1063/1.4865944.

Abstract

Xenon is well known to undergo host-guest interactions with proteins and synthetic molecules. As xenon can also be hyperpolarized by spin exchange optical pumping, allowing the investigation of highly dilute systems, it makes an ideal nuclear magnetic resonance probe for such host molecules. The utility of xenon as a probe can be further improved using Chemical Exchange Saturation Transfer using hyperpolarized nuclei (Hyper-CEST), but for highly accurate experiments requires a polarizer and xenon infusion system optimized for such measurements. We present the design of a hyperpolarizer and xenon infusion system specifically designed to meet the requirements of Hyper-CEST measurements. One key element of this design is preventing rubidium runaway, a chain reaction induced by laser heating that prevents efficient utilization of high photon densities. Using thermocouples positioned along the pumping cell we identify the sources of heating and conditions for rubidium runaway to occur. We then demonstrate the effectiveness of actively cooling the optical cell to prevent rubidium runaway in a compact setup. This results in a 2-3-fold higher polarization than without cooling, allowing us to achieve a polarization of 25% at continuous flow rates of 9 ml/min of (129)Xe. The simplicity of this design also allows it to be retrofitted to many existing polarizers. Combined with a direction infusion system that reduces shot-to-shot noise down to 0.56% we have captured Hyper-CEST spectra in unprecedented detail, allowing us to completely resolve peaks separated by just 1.62 ppm. Due to its high polarization and excellent stability, our design allows the comparison of underlying theories of host-guest systems with experiment at low concentrations, something extremely difficult with previous polarizers.

摘要

氙气众所周知可与蛋白质和合成分子发生主体-客体相互作用。由于氙气也可以通过自旋交换光泵浦进行超极化,从而允许对高度稀释的系统进行研究,因此它成为此类主体分子的理想核磁共振探针。通过使用极化核的化学交换饱和转移(Hyper-CEST)可以进一步提高氙气作为探针的实用性,但对于高度精确的实验需要针对此类测量进行优化的极化器和氙气输注系统。我们提出了一种专门设计的超极化器和氙气输注系统的设计,以满足 Hyper-CEST 测量的要求。该设计的一个关键要素是防止铷失控,这是一种由激光加热引起的链式反应,会阻止高效利用高光子密度。我们使用沿着泵送单元定位的热电偶来确定加热源和铷失控发生的条件。然后,我们展示了主动冷却光学单元以防止在紧凑设置中发生铷失控的有效性。这导致没有冷却时的极化度提高了 2-3 倍,从而使我们能够以 9ml/min 的连续流速(129)Xe 达到 25%的极化度。该设计的简单性还允许将其改装到许多现有的极化器中。结合可将逐点噪声降低至 0.56%的定向输注系统,我们以空前的细节捕获了 Hyper-CEST 光谱,使我们能够完全分辨出仅相隔 1.62ppm 的峰。由于其高极化度和出色的稳定性,我们的设计允许在低浓度下将主体-客体系统的基础理论与实验进行比较,这是以前的极化器极难实现的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验