Kunth Martin, Witte Christopher, Schröder Leif
ERC Project BiosensorImaging, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany.
NMR Biomed. 2015 Jun;28(6):601-6. doi: 10.1002/nbm.3307. Epub 2015 Apr 21.
The combination of hyperpolarized Xe with chemical exchange saturation transfer (Hyper-CEST) is a powerful NMR technique to detect highly dilute concentrations of Xe binding sites using RF saturation pulses. Crucially, that combination of saturation pulse strength and duration that generates the maximal Hyper-CEST effect is a priori unknown. In contrast to CEST in proton MRI, where the system reaches a steady-state for long saturation times, Hyper-CEST has an optimal saturation time, i.e. saturating for shorter or longer reduces the Hyper-CEST effect. Here, we derive expressions for this optimal saturation pulse length. We also found that a pulse strength, B1, corresponding to five times the Xe exchange rate, k(BA) (i.e. B1 = 5 k(BA)/γ with the gyromagnetic ratio of (129)Xe, γ), generates directly and without further optimization 96% of the maximal Hyper-CEST contrast while preserving spectral selectivity. As a measure that optimizes the amplitude and the width of the Hyper-CEST response simultaneously, we found an optimal saturation pulse strength corresponding to √2 times the Xe exchange rate, i.e. B1=√2k(BA)/γ. When extremely low host concentration is detected, then the expression for the optimum saturation time simplifies as it approaches the longitudinal relaxation time of free Xe.
超极化氙与化学交换饱和转移(Hyper-CEST)相结合是一种强大的核磁共振技术,可利用射频饱和脉冲检测氙结合位点的极低稀释浓度。至关重要的是,产生最大Hyper-CEST效应的饱和脉冲强度和持续时间的组合是先验未知的。与质子磁共振成像中的CEST不同,在质子磁共振成像中,系统在长时间饱和时达到稳态,而Hyper-CEST有一个最佳饱和时间,即饱和时间过短或过长都会降低Hyper-CEST效应。在此,我们推导了该最佳饱和脉冲长度的表达式。我们还发现,对应于氙交换率k(BA)五倍的脉冲强度B1(即B1 = 5k(BA)/γ,其中(129)Xe的旋磁比为γ),在保持光谱选择性的同时,无需进一步优化即可直接产生96%的最大Hyper-CEST对比度。作为一种同时优化Hyper-CEST响应幅度和宽度的措施,我们发现对应于氙交换率√2倍的最佳饱和脉冲强度,即B1 = √2k(BA)/γ。当检测到极低的主体浓度时,最佳饱和时间的表达式在接近自由氙的纵向弛豫时间时会简化。