Suppr超能文献

基于 F-FDG-PET 的放射组学和深度学习特征的功效,采用机器学习方法预测胸腺瘤的病理风险亚型。

The efficacy of F-FDG-PET-based radiomic and deep-learning features using a machine-learning approach to predict the pathological risk subtypes of thymic epithelial tumors.

机构信息

Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

Department of General Thoracic Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima, Japan.

出版信息

Br J Radiol. 2022 Jun 1;95(1134):20211050. doi: 10.1259/bjr.20211050. Epub 2022 Mar 28.

Abstract

OBJECTIVE

To examine whether the machine-learning approach using 18-fludeoxyglucose positron emission tomography (F-FDG-PET)-based radiomic and deep-learning features is useful for predicting the pathological risk subtypes of thymic epithelial tumors (TETs).

METHODS

This retrospective study included 79 TET [27 low-risk thymomas (types A, AB and B1), 31 high-risk thymomas (types B2 and B3) and 21 thymic carcinomas] patients who underwent pre-therapeutic F-FDG-PET/CT. High-risk TETs (high-risk thymomas and thymic carcinomas) were 52 patients. The 107 PET-based radiomic features, including SUV-related parameters [maximum SUV (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG)] and 1024 deep-learning features extracted from the convolutional neural network were used to predict the pathological risk subtypes of TETs using six different machine-learning algorithms. The area under the curves (AUCs) were calculated to compare the predictive performances.

RESULTS

SUV-related parameters yielded the following AUCs for predicting thymic carcinomas: SUVmax 0.713, MTV 0.442, and TLG 0.479 or high-risk TETs: SUVmax 0.673, MTV 0.533, and TLG 0.539. The best-performing algorithm was the logistic regression model for predicting thymic carcinomas (AUC 0.900, accuracy 81.0%), and the random forest (RF) model for high-risk TETs (AUC 0.744, accuracy 72.2%). The AUC was significantly higher in the logistic regression model than three SUV-related parameters for predicting thymic carcinomas, and in the RF model than MTV and TLG for predicting high-risk TETs (each; < 0.05).

CONCLUSION

F-FDG-PET-based radiomic analysis using a machine-learning approach may be useful for predicting the pathological risk subtypes of TETs.

ADVANCES IN KNOWLEDGE

Machine-learning approach using F-FDG-PET-based radiomic features has the potential to predict the pathological risk subtypes of TETs.

摘要

目的

探讨基于 18 氟-脱氧葡萄糖正电子发射断层扫描(F-FDG-PET)的放射组学和深度学习特征的机器学习方法是否可用于预测胸腺瘤(TET)的病理风险亚型。

方法

本回顾性研究纳入 79 例接受治疗前 F-FDG-PET/CT 检查的 TET [27 例低危胸腺瘤(A型、AB 型和 B1 型)、31 例高危胸腺瘤(B2 型和 B3 型)和 21 例胸腺癌]患者。高危 TET(高危胸腺瘤和胸腺癌)患者 52 例。使用六种不同的机器学习算法,基于 107 个 PET 放射组学特征(包括 SUV 相关参数[最大 SUV(SUV)、代谢肿瘤体积(MTV)和总病变糖酵解(TLG)]和从卷积神经网络中提取的 1024 个深度学习特征)来预测 TET 的病理风险亚型。计算曲线下面积(AUCs)以比较预测性能。

结果

SUV 相关参数预测胸腺癌的 AUC 分别为:SUVmax 0.713、MTV 0.442 和 TLG 0.479,预测高危 TET 的 AUC 分别为:SUVmax 0.673、MTV 0.533 和 TLG 0.539。预测胸腺癌的最佳算法是逻辑回归模型(AUC 0.900,准确性 81.0%),预测高危 TET 的最佳算法是随机森林(RF)模型(AUC 0.744,准确性 72.2%)。与 SUV 相关参数相比,逻辑回归模型预测胸腺癌的 AUC 显著更高(均<0.05),与 MTV 和 TLG 相比,RF 模型预测高危 TET 的 AUC 更高(均<0.05)。

结论

基于 F-FDG-PET 的放射组学分析结合机器学习方法可能有助于预测 TET 的病理风险亚型。

知识进展

基于 F-FDG-PET 的放射组学特征的机器学习方法有可能预测 TET 的病理风险亚型。

相似文献

2
Diagnostic and prognostic values of 2-[F]FDG PET/CT in resectable thymic epithelial tumour.
Eur Radiol. 2022 Feb;32(2):1173-1183. doi: 10.1007/s00330-021-08230-z. Epub 2021 Aug 26.
3
Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network.
Clin Nucl Med. 2022 Jul 1;47(7):590-598. doi: 10.1097/RLU.0000000000004146. Epub 2022 Apr 27.
4
Is (18)F-FDG PET useful in predicting the WHO grade of malignancy in thymic epithelial tumors? A meta-analysis.
Lung Cancer. 2014 Oct;86(1):5-13. doi: 10.1016/j.lungcan.2014.08.008. Epub 2014 Aug 18.
5
Value of metabolic parameters in distinguishing primary mediastinal lymphomas from thymic epithelial tumors.
Cancer Biol Med. 2020 May 15;17(2):468-477. doi: 10.20892/j.issn.2095-3941.2019.0428.
6
The Role of [F]FDG PET/CT in the Characterization of Thymic Epithelial Tumors at Initial Stage.
Cancer Biother Radiopharm. 2024 Jun;39(5):373-380. doi: 10.1089/cbr.2023.0192. Epub 2024 Mar 14.
8
Superiority of [Ga]Ga-DOTA-FAPI-04 PET/CT to [F]FDG PET/CT in the evaluation of thymic epithelial tumours.
Eur J Nucl Med Mol Imaging. 2023 Sep;50(11):3414-3424. doi: 10.1007/s00259-023-06294-1. Epub 2023 Jun 15.
10
Role of combined 18F-FDG-PET/CT for predicting the WHO malignancy grade of thymic epithelial tumors: a multicenter analysis.
Lung Cancer. 2013 Nov;82(2):245-51. doi: 10.1016/j.lungcan.2013.08.003. Epub 2013 Aug 13.

引用本文的文献

1
Contrast-enhanced CT-based deep learning model assists in preoperative risk classification of thymic epithelial tumors.
Front Oncol. 2025 Jul 31;15:1616816. doi: 10.3389/fonc.2025.1616816. eCollection 2025.
2
Machine Learning Models Derived from [F]FDG PET/CT for the Prediction of Recurrence in Patients with Thymomas.
Bioengineering (Basel). 2025 Jun 30;12(7):721. doi: 10.3390/bioengineering12070721.
4
Radiomics in thymic epithelial tumors: a scoping review of current status and advances.
BMC Cancer. 2025 Mar 17;25(1):493. doi: 10.1186/s12885-025-13909-3.
5
The Role of [F]F-FDG PET/CT for Predicting Histology and Prognosis in Patients with Thymic Lesions.
Mol Diagn Ther. 2025 Mar;29(2):239-248. doi: 10.1007/s40291-024-00767-1. Epub 2025 Jan 7.
6
Re-evaluation and operative indications after induction therapy for thymic epithelial tumors.
Mediastinum. 2024 Jun 4;8:43. doi: 10.21037/med-23-70. eCollection 2024.

本文引用的文献

2
A Machine-Learning Approach Using PET-Based Radiomics to Predict the Histological Subtypes of Lung Cancer.
Clin Nucl Med. 2019 Dec;44(12):956-960. doi: 10.1097/RLU.0000000000002810.
4
Big data and machine learning algorithms for health-care delivery.
Lancet Oncol. 2019 May;20(5):e262-e273. doi: 10.1016/S1470-2045(19)30149-4.
5
Pre-treatment F-FDG PET-based radiomics predict survival in resected non-small cell lung cancer.
Clin Radiol. 2019 Jun;74(6):467-473. doi: 10.1016/j.crad.2019.02.008. Epub 2019 Mar 18.
6
Texture analysis of F-FDG PET/CT for grading thymic epithelial tumours: usefulness of combining SUV and texture parameters.
Br J Radiol. 2018 Feb;91(1083):20170546. doi: 10.1259/bjr.20170546. Epub 2018 Jan 19.
7
Computational Radiomics System to Decode the Radiographic Phenotype.
Cancer Res. 2017 Nov 1;77(21):e104-e107. doi: 10.1158/0008-5472.CAN-17-0339.
8
MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis.
Eur Radiol. 2018 Jan;28(1):356-362. doi: 10.1007/s00330-017-4964-z. Epub 2017 Jul 28.
10
Machine Learning for Medical Imaging.
Radiographics. 2017 Mar-Apr;37(2):505-515. doi: 10.1148/rg.2017160130. Epub 2017 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验