Suppr超能文献

对mRNA核碱基的化学修饰会影响翻译延伸和终止。

Chemical modifications to mRNA nucleobases impact translation elongation and termination.

作者信息

Franco Monika K, Koutmou Kristin S

机构信息

Program in Chemical Biology, University of Michigan, USA.

Program in Chemical Biology, University of Michigan, USA; Department of Chemistry, University of Michigan, USA.

出版信息

Biophys Chem. 2022 Jun;285:106780. doi: 10.1016/j.bpc.2022.106780. Epub 2022 Feb 16.

Abstract

Messenger RNAs (mRNAs) serve as blueprints for protein synthesis by the molecular machine the ribosome. The ribosome relies on hydrogen bonding interactions between adaptor aminoacyl-transfer RNA molecules and mRNAs to ensure the rapid and faithful translation of the genetic code into protein. There is a growing body of evidence suggesting that chemical modifications to mRNA nucleosides impact the speed and accuracy of protein synthesis by the ribosome. Modulations in translation rates have downstream effects beyond protein production, influencing protein folding and mRNA stability. Given the prevalence of such modifications in mRNA coding regions, it is imperative to understand the consequences of individual modifications on translation. In this review we present the current state of our knowledge regarding how individual mRNA modifications influence ribosome function. Our comprehensive comparison of the impacts of 16 different mRNA modifications on translation reveals that most modifications can alter the elongation step in the protein synthesis pathway. Additionally, we discuss the context dependence of these effects, highlighting the necessity of further study to uncover the rules that govern how any given chemical modification in an mRNA codon is read by the ribosome.

摘要

信使核糖核酸(mRNA)作为核糖体这一分子机器进行蛋白质合成的蓝图。核糖体依靠衔接子氨酰转运RNA分子与mRNA之间的氢键相互作用,以确保将遗传密码快速且准确地翻译成蛋白质。越来越多的证据表明,对mRNA核苷的化学修饰会影响核糖体进行蛋白质合成的速度和准确性。翻译速率的调节在蛋白质产生之外还具有下游效应,影响蛋白质折叠和mRNA稳定性。鉴于此类修饰在mRNA编码区普遍存在,了解单个修饰对翻译的影响至关重要。在本综述中,我们阐述了关于单个mRNA修饰如何影响核糖体功能的当前知识状态。我们对16种不同mRNA修饰对翻译的影响进行的全面比较表明,大多数修饰会改变蛋白质合成途径中的延伸步骤。此外,我们讨论了这些效应的背景依赖性,强调了进一步研究以揭示核糖体如何读取mRNA密码子中任何给定化学修饰的规则的必要性。

相似文献

1
Chemical modifications to mRNA nucleobases impact translation elongation and termination.
Biophys Chem. 2022 Jun;285:106780. doi: 10.1016/j.bpc.2022.106780. Epub 2022 Feb 16.
2
Pseudouridinylation of mRNA coding sequences alters translation.
Proc Natl Acad Sci U S A. 2019 Nov 12;116(46):23068-23074. doi: 10.1073/pnas.1821754116. Epub 2019 Oct 31.
4
Codon optimality-mediated mRNA degradation: Linking translational elongation to mRNA stability.
Mol Cell. 2022 Apr 21;82(8):1467-1476. doi: 10.1016/j.molcel.2022.03.032.
5
The ribosome in action: Tuning of translational efficiency and protein folding.
Protein Sci. 2016 Aug;25(8):1390-406. doi: 10.1002/pro.2950. Epub 2016 Jun 8.
6
Investigating the consequences of mRNA modifications on protein synthesis using in vitro translation assays.
Methods Enzymol. 2021;658:379-406. doi: 10.1016/bs.mie.2021.06.011. Epub 2021 Jul 29.
7
The ribosome uses two active mechanisms to unwind messenger RNA during translation.
Nature. 2011 Jul 6;475(7354):118-21. doi: 10.1038/nature10126.
8
9
Ribosome reinitiation can explain length-dependent translation of messenger RNA.
PLoS Comput Biol. 2017 Jun 9;13(6):e1005592. doi: 10.1371/journal.pcbi.1005592. eCollection 2017 Jun.

引用本文的文献

1
Effects of Nucleoside Modifications on mRNA Translation: Choosing the Right Modifications.
Methods Mol Biol. 2025;2965:127-149. doi: 10.1007/978-1-0716-4742-4_4.
3
The Potential of RNA Therapeutics in Treating Cardiovascular Disease.
Drugs. 2025 May;85(5):659-676. doi: 10.1007/s40265-025-02173-1. Epub 2025 Apr 2.
5
The ribosome as a platform to coordinate mRNA decay.
Nucleic Acids Res. 2025 Feb 8;53(4). doi: 10.1093/nar/gkaf049.
6
Sequencing technologies to measure translation in single cells.
Nat Rev Mol Cell Biol. 2025 May;26(5):337-346. doi: 10.1038/s41580-024-00822-z. Epub 2025 Jan 20.
7
N1-Methylpseudouridine and pseudouridine modifications modulate mRNA decoding during translation.
Nat Commun. 2024 Sep 16;15(1):8119. doi: 10.1038/s41467-024-51301-0.
8
Advancements and challenges in mRNA and ribonucleoprotein-based therapies: From delivery systems to clinical applications.
Mol Ther Nucleic Acids. 2024 Aug 19;35(3):102313. doi: 10.1016/j.omtn.2024.102313. eCollection 2024 Sep 10.
10
Site-specific N-alkylation of DNA oligonucleotide nucleobases by DNAzyme-catalyzed reductive amination.
Nucleic Acids Res. 2024 Aug 27;52(15):8702-8716. doi: 10.1093/nar/gkae639.

本文引用的文献

1
mRNA and tRNA modification states influence ribosome speed and frame maintenance during poly(lysine) peptide synthesis.
J Biol Chem. 2022 Jun;298(6):102039. doi: 10.1016/j.jbc.2022.102039. Epub 2022 May 17.
2
scDART-seq reveals distinct mA signatures and mRNA methylation heterogeneity in single cells.
Mol Cell. 2022 Feb 17;82(4):868-878.e10. doi: 10.1016/j.molcel.2021.12.038. Epub 2022 Jan 25.
4
Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing.
Mol Cell. 2022 Feb 3;82(3):645-659.e9. doi: 10.1016/j.molcel.2021.12.023. Epub 2022 Jan 19.
6
Transcription-wide mapping of dihydrouridine reveals that mRNA dihydrouridylation is required for meiotic chromosome segregation.
Mol Cell. 2022 Jan 20;82(2):404-419.e9. doi: 10.1016/j.molcel.2021.11.003. Epub 2021 Nov 18.
7
Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation.
Nat Chem Biol. 2021 Nov;17(11):1178-1187. doi: 10.1038/s41589-021-00874-8. Epub 2021 Sep 23.
8
Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines.
ACS Cent Sci. 2021 May 26;7(5):748-756. doi: 10.1021/acscentsci.1c00197. Epub 2021 Apr 6.
9
Detecting the epitranscriptome.
Wiley Interdiscip Rev RNA. 2021 Nov;12(6):e1663. doi: 10.1002/wrna.1663. Epub 2021 May 13.
10
Inosine in Biology and Disease.
Genes (Basel). 2021 Apr 19;12(4):600. doi: 10.3390/genes12040600.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验