Rogers David W, Böttcher Marvin A, Traulsen Arne, Greig Duncan
Experimental Evolution Research Group, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Department of Evolutionary Theory, Max Planck Institute for Evolutionary Biology, Plön, Germany.
PLoS Comput Biol. 2017 Jun 9;13(6):e1005592. doi: 10.1371/journal.pcbi.1005592. eCollection 2017 Jun.
Models of mRNA translation usually presume that transcripts are linear; upon reaching the end of a transcript each terminating ribosome returns to the cytoplasmic pool before initiating anew on a different transcript. A consequence of linear models is that faster translation of a given mRNA is unlikely to generate more of the encoded protein, particularly at low ribosome availability. Recent evidence indicates that eukaryotic mRNAs are circularized, potentially allowing terminating ribosomes to preferentially reinitiate on the same transcript. Here we model the effect of ribosome reinitiation on translation and show that, at high levels of reinitiation, protein synthesis rates are dominated by the time required to translate a given transcript. Our model provides a simple mechanistic explanation for many previously enigmatic features of eukaryotic translation, including the negative correlation of both ribosome densities and protein abundance on transcript length, the importance of codon usage in determining protein synthesis rates, and the negative correlation between transcript length and both codon adaptation and 5' mRNA folding energies. In contrast to linear models where translation is largely limited by initiation rates, our model reveals that all three stages of translation-initiation, elongation, and termination/reinitiation-determine protein synthesis rates even at low ribosome availability.
信使核糖核酸(mRNA)翻译模型通常假定转录本是线性的;每个终止的核糖体在转录本末端结束翻译后会回到细胞质池,然后再在另一个不同的转录本上重新开始翻译。线性模型的一个结果是,给定mRNA的更快翻译不太可能产生更多的编码蛋白,尤其是在核糖体可用性较低的情况下。最近的证据表明,真核生物的mRNA会环化,这可能使终止的核糖体优先在同一转录本上重新起始翻译。在此,我们对核糖体重新起始对翻译的影响进行建模,并表明,在高水平的重新起始情况下,蛋白质合成速率主要由翻译给定转录本所需的时间决定。我们的模型为真核生物翻译的许多先前难以解释的特征提供了一个简单的机制解释,包括核糖体密度和转录本长度上的蛋白质丰度的负相关、密码子使用在决定蛋白质合成速率中的重要性,以及转录本长度与密码子适应性和5' mRNA折叠能量之间的负相关。与翻译主要受起始速率限制的线性模型不同,我们的模型表明,即使在核糖体可用性较低的情况下,翻译的所有三个阶段——起始、延伸和终止/重新起始——都决定蛋白质合成速率。