Suppr超能文献

酿酒酵母突变体工程改造以提高对木质纤维素水解物抑制剂耐受性的数据挖掘。

Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates.

机构信息

Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.

Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden.

出版信息

Biotechnol Adv. 2022 Jul-Aug;57:107947. doi: 10.1016/j.biotechadv.2022.107947. Epub 2022 Mar 18.

Abstract

The use of renewable plant biomass, lignocellulose, to produce biofuels and biochemicals using microbial cell factories plays a fundamental role in the future bioeconomy. The development of cell factories capable of efficiently fermenting complex biomass streams will improve the cost-effectiveness of microbial conversion processes. At present, inhibitory compounds found in hydrolysates of lignocellulosic biomass substantially influence the performance of a cell factory and the economic feasibility of lignocellulosic biofuels and chemicals. Here, we present and statistically analyze data on Saccharomyces cerevisiae mutants engineered for altered tolerance towards the most common inhibitors found in lignocellulosic hydrolysates: acetic acid, formic acid, furans, and phenolic compounds. We collected data from 7971 experiments including single overexpression or deletion of 3955 unique genes. The mutants included in the analysis had been shown to display increased or decreased tolerance to individual inhibitors or combinations of inhibitors found in lignocellulosic hydrolysates. Moreover, the data included mutants grown on synthetic hydrolysates, in which inhibitors were added at concentrations that mimicked those of lignocellulosic hydrolysates. Genetic engineering aimed at improving inhibitor or hydrolysate tolerance was shown to alter the specific growth rate or length of the lag phase, cell viability, and vitality, block fermentation, and decrease product yield. Different aspects of strain engineering aimed at improving hydrolysate tolerance, such as choice of strain and experimental set-up are discussed and put in relation to their biological relevance. While successful genetic engineering is often strain and condition dependent, we highlight the conserved role of regulators, transporters, and detoxifying enzymes in inhibitor tolerance. The compiled meta-analysis can guide future engineering attempts and aid the development of more efficient cell factories for the conversion of lignocellulosic biomass.

摘要

利用可再生植物生物质,木质纤维素,利用微生物细胞工厂生产生物燃料和生物化学物质,在未来的生物经济中发挥着重要作用。开发能够高效发酵复杂生物质流的细胞工厂将提高微生物转化过程的成本效益。目前,木质纤维素生物质水解物中发现的抑制性化合物会极大地影响细胞工厂的性能和木质纤维素生物燃料和化学品的经济可行性。在这里,我们介绍并对酿酒酵母突变体的数据进行了统计分析,这些突变体经过工程改造后对木质纤维素水解物中最常见的抑制剂(如乙酸、甲酸、呋喃和酚类化合物)具有改变的耐受性。我们从 7971 项实验中收集了数据,其中包括 3955 个独特基因的单个过表达或缺失。所分析的突变体已经显示出对木质纤维素水解物中单独抑制剂或抑制剂组合的耐受性增加或降低。此外,数据还包括在合成水解物上生长的突变体,其中抑制剂的添加浓度模拟了木质纤维素水解物中的浓度。遗传工程旨在提高抑制剂或水解物耐受性,结果改变了特定生长速率或迟滞期长度、细胞活力和活力、发酵阻断和产物产量下降。我们讨论了旨在提高水解物耐受性的菌株工程的不同方面,如菌株选择和实验设置,并将其与生物学相关性联系起来。虽然成功的遗传工程通常取决于菌株和条件,但我们强调了调节因子、转运蛋白和解毒酶在抑制剂耐受性中的保守作用。编译的荟萃分析可以指导未来的工程尝试,并有助于开发更有效的细胞工厂,用于转化木质纤维素生物质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验