Suppr超能文献

小鼠嗅觉小球图谱的空间转录组学重建揭示了气味处理的原理。

Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing.

作者信息

Wang I-Hao, Murray Evan, Andrews Greg, Jiang Hao-Ching, Park Sung Jin, Donnard Elisa, Durán-Laforet Violeta, Bear Daniel M, Faust Travis E, Garber Manuel, Baer Christina E, Schafer Dorothy P, Weng Zhiping, Chen Fei, Macosko Evan Z, Greer Paul L

机构信息

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

Broad Institute of Harvard and MIT, Cambridge, MA, USA.

出版信息

Nat Neurosci. 2022 Apr;25(4):484-492. doi: 10.1038/s41593-022-01030-8. Epub 2022 Mar 21.

Abstract

The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.

摘要

嗅觉系统检测和区分环境中大量化学物质的能力对动物的生存至关重要。在哺乳动物中,这种气味处理的第一步是由嗅觉感觉神经元执行的,这些神经元将它们的轴突投射到嗅球(OB)中一个固定的位置以形成肾小球。肾小球在OB中的固定定位表明这种组织在气味感知中具有重要性。然而,由于仅确定了有限子集的肾小球的位置,因此确定肾小球位置与气味辨别之间的关系一直具有挑战性。通过结合单细胞RNA测序、空间转录组学和机器学习,我们生成了小鼠OB中大多数肾小球位置的图谱。这些观察结果显著扩展了早期的研究,并提出了OB中的一个总体组织原则,大脑可能会利用该原则来协助气味解码。

相似文献

1
Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing.
Nat Neurosci. 2022 Apr;25(4):484-492. doi: 10.1038/s41593-022-01030-8. Epub 2022 Mar 21.
2
Distorted odor maps in the olfactory bulb of semaphorin 3A-deficient mice.
J Neurosci. 2003 Feb 15;23(4):1390-7. doi: 10.1523/JNEUROSCI.23-04-01390.2003.
3
Spatiotemporal dynamics of odor responses in the lateral and dorsal olfactory bulb.
PLoS Biol. 2019 Sep 18;17(9):e3000409. doi: 10.1371/journal.pbio.3000409. eCollection 2019 Sep.
4
Principles of glomerular organization in the human olfactory bulb--implications for odor processing.
PLoS One. 2008 Jul 9;3(7):e2640. doi: 10.1371/journal.pone.0002640.
5
The olfactory bulb: coding and processing of odor molecule information.
Science. 1999 Oct 22;286(5440):711-5. doi: 10.1126/science.286.5440.711.
7
Recovery of glomerular morphology in the olfactory bulb of young mice after disruption caused by continuous odorant exposure.
Brain Res. 2017 Sep 1;1670:6-13. doi: 10.1016/j.brainres.2017.05.030. Epub 2017 Jun 2.
8
Odor representations in the mammalian olfactory bulb.
Wiley Interdiscip Rev Syst Biol Med. 2010 Sep-Oct;2(5):603-611. doi: 10.1002/wsbm.85.
9
Early Odorant Exposure Increases the Number of Mitral and Tufted Cells Associated with a Single Glomerulus.
J Neurosci. 2016 Nov 16;36(46):11646-11653. doi: 10.1523/JNEUROSCI.0654-16.2016.
10
Adaptive olfactory circuitry restores function despite severe olfactory bulb degeneration.
Curr Biol. 2023 Nov 20;33(22):4857-4868.e6. doi: 10.1016/j.cub.2023.09.061. Epub 2023 Oct 18.

引用本文的文献

1
ST-deconv: an accurate deconvolution approach for spatial transcriptome data utilizing self-encoding and contrastive learning.
NAR Genom Bioinform. 2025 Aug 27;7(3):lqaf109. doi: 10.1093/nargab/lqaf109. eCollection 2025 Sep.
2
Beyond benchmarking: an expert-guided consensus approach to spatially aware clustering.
bioRxiv. 2025 Jun 27:2025.06.23.660861. doi: 10.1101/2025.06.23.660861.
3
Molecular and Spatial Organization of the Primary Olfactory System and its Responses to Social Odors.
bioRxiv. 2025 May 2:2025.05.02.651832. doi: 10.1101/2025.05.02.651832.
6
Benchmarking algorithms for spatially variable gene identification in spatial transcriptomics.
Bioinformatics. 2025 Mar 29;41(4). doi: 10.1093/bioinformatics/btaf131.
9
STMiner: Gene-centric spatial transcriptomics for deciphering tumor tissues.
Cell Genom. 2025 Feb 12;5(2):100771. doi: 10.1016/j.xgen.2025.100771.
10
The Role of Air Pollution and Olfactory Dysfunction in Alzheimer's Disease Pathogenesis.
Biomedicines. 2025 Jan 20;13(1):246. doi: 10.3390/biomedicines13010246.

本文引用的文献

1
Embryo-scale, single-cell spatial transcriptomics.
Science. 2021 Jul 2;373(6550):111-117. doi: 10.1126/science.abb9536.
2
Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma.
Cancer Cell. 2021 Jun 14;39(6):779-792.e11. doi: 10.1016/j.ccell.2021.05.002. Epub 2021 Jun 3.
3
4
Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2.
Nat Biotechnol. 2021 Mar;39(3):313-319. doi: 10.1038/s41587-020-0739-1. Epub 2020 Dec 7.
5
DolphinNext: a distributed data processing platform for high throughput genomics.
BMC Genomics. 2020 Apr 19;21(1):310. doi: 10.1186/s12864-020-6714-x.
6
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat Methods. 2019 Dec;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0. Epub 2019 Nov 18.
7
Mosaic representations of odors in the input and output layers of the mouse olfactory bulb.
Nat Neurosci. 2019 Aug;22(8):1306-1317. doi: 10.1038/s41593-019-0442-z. Epub 2019 Jul 22.
8
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
9
Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.
Cell Syst. 2019 Apr 24;8(4):281-291.e9. doi: 10.1016/j.cels.2018.11.005. Epub 2019 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验