Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, 38134.
Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, 38134
J Neurosci. 2018 May 16;38(20):4623-4640. doi: 10.1523/JNEUROSCI.3559-17.2018. Epub 2018 Apr 18.
Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing nonspecifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and nonconditioned odors, potentially priming the system toward generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings. In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning-independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important implications for altered sensory processing in fear generalization.
关联恐惧学习会导致对条件刺激(CS)的恐惧,并且通常会产生恐惧的泛化,即从 CS 扩展到类似的、未学习的刺激。然而,恐惧学习如何影响与这些刺激的行为恐惧反应有关的学习和未学习刺激的早期感觉处理仍然不清楚。我们让在嗅球僧帽细胞和丛状细胞中表达荧光钙指示剂 GCaMP3 的雄性和雌性小鼠接受经典的嗅觉恐惧条件反射范式。然后,我们使用清醒的钙成像来量化学习诱导的肾小球气味反应变化,这些变化构成了大脑中嗅觉处理的第一站。结果表明,气味-电击配对以学习依赖的方式非特异性地增强了肾小球的气味表示,并且增加了 CS 和非条件气味之间的表示相似性,这可能使系统向学习恐惧的泛化做好准备。此外,即使阻断了联想学习,CS 特异性肾小球增强仍然存在,这表明两种独立的机制导致了气味-电击配对后肾小球反应的增强。在嗅球(OB)中,气味以表示气味身份的空间图的形式被独特地编码,使 OB 成为研究学习恐惧如何改变感觉处理的独特模型系统。经典的恐惧条件反射会导致对条件刺激(CS)和中性刺激的恐惧,这被称为泛化。我们将恐惧条件反射与 OB 肾小球的荧光钙成像相结合,发现清醒小鼠的 CS 和中性刺激的肾小球反应增强,这反映了恐惧的泛化。我们报告说,CS 和中性刺激的增强分别是学习独立的和学习依赖的。总之,这些结果揭示了导致恐惧诱导刺激的 OB 处理增强的不同机制,并为恐惧泛化中感觉处理的改变提供了重要启示。