Institute of Collective Health, Federal University of Bahia, Salvador, Brazil.
ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
PLoS One. 2022 Mar 22;17(3):e0265253. doi: 10.1371/journal.pone.0265253. eCollection 2022.
BACKGROUND: Despite the great progress made over the last decades, stronger structural interventions are needed to end the HIV/AIDS pandemic in Low and Middle-Income Countries (LMIC). Brazil is one of the largest and data-richest LMIC, with rapidly changing socioeconomic characteristics and an important HIV/AIDS burden. Over the last two decades Brazil has also implemented the world's largest Conditional Cash Transfer programs, the Bolsa Familia Program (BFP), and one of the most consolidated Primary Health Care (PHC) interventions, the Family Health Strategy (FHS). OBJECTIVE: We will evaluate the effects of socioeconomic determinants, BFP exposure and FHS coverage on HIV/AIDS incidence, treatment adherence, hospitalizations, case fatality, and mortality using unprecedently large aggregate and individual-level longitudinal data. Moreover, we will integrate the retrospective datasets and estimated parameters with comprehensive forecasting models to project HIV/AIDS incidence, prevalence and mortality scenarios up to 2030 according to future socioeconomic conditions and alternative policy implementations. METHODS AND ANALYSIS: We will combine individual-level data from all national HIV/AIDS registries with large-scale databases, including the "100 Million Brazilian Cohort", over a 19-year period (2000-2018). Several approaches will be used for the retrospective quasi-experimental impact evaluations, such as Regression Discontinuity Design (RDD), Random Administrative Delays (RAD) and Propensity Score Matching (PSM), combined with multivariable Poisson regressions for cohort analyses. Moreover, we will explore in depth lagged and long-term effects of changes in living conditions and in exposures to BFP and FHS. We will also investigate the effects of the interventions in a wide range of subpopulations. Finally, we will integrate such retrospective analyses with microsimulation, compartmental and agent-based models to forecast future HIV/AIDS scenarios. CONCLUSION: The unprecedented datasets, analyzed through state-of-the-art quasi-experimental methods and innovative mathematical models will provide essential evidences to the understanding and control of HIV/AIDS epidemic in LMICs such as Brazil.
背景:尽管在过去几十年中取得了巨大进展,但仍需要更强有力的结构性干预措施来终结中低收入国家(LMIC)的艾滋病毒/艾滋病疫情。巴西是最大和数据最丰富的 LMIC 之一,其社会经济特征变化迅速,艾滋病毒/艾滋病负担沉重。在过去的二十年中,巴西还实施了世界上最大的有条件现金转移支付计划——家庭福利计划(BFP),以及最巩固的初级卫生保健(PHC)干预措施之一——家庭健康战略(FHS)。
目的:我们将利用前所未有的大规模综合和个体水平纵向数据,评估社会经济决定因素、BFP 暴露和 FHS 覆盖率对艾滋病毒/艾滋病发病率、治疗依从性、住院、病死率和死亡率的影响。此外,我们将整合回顾性数据集和估计参数与综合预测模型,根据未来社会经济条件和替代政策实施情况,预测到 2030 年艾滋病毒/艾滋病发病率、流行率和死亡率情景。
方法和分析:我们将在 19 年期间(2000-2018 年)将来自所有国家艾滋病毒/艾滋病登记处的个体水平数据与包括“1 亿巴西队列”在内的大型数据库相结合。将使用多种方法进行回顾性准实验影响评估,例如回归不连续性设计(RDD)、随机行政延迟(RAD)和倾向评分匹配(PSM),并结合多变量泊松回归进行队列分析。此外,我们将深入探讨生活条件变化以及 BFP 和 FHS 暴露的滞后和长期影响。我们还将在广泛的亚人群中研究干预措施的效果。最后,我们将把这种回顾性分析与微观模拟、隔室和基于主体的模型相结合,以预测未来的艾滋病毒/艾滋病情景。
结论:通过最先进的准实验方法和创新的数学模型分析前所未有的数据集,将为理解和控制巴西等中低收入国家的艾滋病毒/艾滋病疫情提供重要依据。
Int J Epidemiol. 2022-5-9
Lancet. 2018-10-20
BMC Public Health. 2018-8-22