Khosheghbal Amir, Haas Peter J, Gopalappa Chaitra
Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, USA.
Manning College of Information and Computer Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
Health Care Manag Sci. 2025 Mar;28(1):28-49. doi: 10.1007/s10729-024-09694-3. Epub 2024 Dec 2.
As social and economic conditions are key determinants of HIV, the United States 'National HIV/AIDS Strategy (NHAS)', in addition to care and treatment, aims to address mental health, unemployment, food insecurity, and housing instability, as part of its strategic plan for the 'Ending the HIV Epidemic' initiative. Although mechanistic models of HIV play a key role in evaluating intervention strategies, social conditions are typically not part of the modeling framework. Challenges include the unavailability of coherent statistical data for social conditions and behaviors. We developed a method, combining undirected graphical modeling with copula methods, to integrate disparate data sources, to estimate joint probability distributions for social conditions and behaviors. We incorporated these in a national-level network model, Progression and Transmission of HIV (PATH 4.0), to simulate behaviors as functions of social conditions and HIV transmissions as a function of behaviors. As a demonstration for the potential applications of such a model, we conducted two hypothetical what-if intervention analyses to estimate the impact of an ideal 100% efficacious intervention strategy. The first analysis modeled care behavior (using viral suppression as proxy) as a function of depression, neighborhood, housing, poverty, education, insurance, and employment status. The second modeled sexual behaviors (number of partners and condom-use) as functions of employment, housing, poverty, and education status, among persons who exchange sex. HIV transmissions and disease progression were then simulated as functions of behaviors to estimate incidence reductions. Social determinants are key drivers of many infectious and non-infectious diseases. Our work enables the development of decision support tools to holistically evaluate the syndemics of health and social inequity.
由于社会和经济状况是艾滋病毒的关键决定因素,美国的《国家艾滋病毒/艾滋病战略》(NHAS)除了关注护理和治疗外,还旨在解决心理健康、失业、粮食不安全和住房不稳定等问题,作为其“终结艾滋病毒流行”倡议战略计划的一部分。尽管艾滋病毒的机制模型在评估干预策略中发挥着关键作用,但社会状况通常不是建模框架的一部分。挑战包括缺乏关于社会状况和行为的连贯统计数据。我们开发了一种方法,将无向图形建模与连接函数方法相结合,以整合不同的数据源,估计社会状况和行为的联合概率分布。我们将这些纳入了一个国家级网络模型——艾滋病毒的进展与传播(PATH 4.0),以模拟作为社会状况函数的行为以及作为行为函数的艾滋病毒传播。作为该模型潜在应用的一个示范,我们进行了两项假设的情景干预分析,以估计理想的100%有效干预策略的影响。第一项分析将护理行为(以病毒抑制为代理)建模为抑郁、邻里关系、住房、贫困、教育、保险和就业状况的函数。第二项分析将性行为(性伴侣数量和使用安全套情况)建模为从事性交易的人群的就业、住房、贫困和教育状况的函数。然后将艾滋病毒传播和疾病进展模拟为行为的函数,以估计发病率的降低情况。社会决定因素是许多传染病和非传染病的关键驱动因素。我们的工作有助于开发决策支持工具,以全面评估健康和社会不平等的综合征。
Int J Health Serv. 1991
Res Rep Health Eff Inst. 2014-6
MMWR Morb Mortal Wkly Rep. 2019-3-22
AIDS Behav. 2021-11
Philos Trans A Math Phys Eng Sci. 2023-5-15
Circ Res. 2022-3-4
BMC Health Serv Res. 2022-1-13