Suppr超能文献

使用患者热稀释数据,采用梯度提升回归的逆建模方法进行每搏输出量估计的测试。

Testing an inverse modeling approach with gradient boosting regression for stroke volume estimation using patient thermodilution data.

作者信息

Bikia Vasiliki Vicky, Adamopoulos Dionysios, Roffi Marco, Rovas Georgios, Noble Stéphane, Mach François, Stergiopulos Nikolaos

机构信息

Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Lausanne, Switzerland.

Department of Internal Medicine, Division of Cardiology, Hôpitaux Universitaires de Genève, Geneva, Switzerland.

出版信息

Front Artif Intell. 2025 Mar 18;8:1530453. doi: 10.3389/frai.2025.1530453. eCollection 2025.

Abstract

Stroke volume (SV) is a major indicator of cardiovascular function, providing essential information about heart performance and blood flow adequacy. Accurate SV measurement is particularly important for assessing patients with heart failure, managing patients undergoing major surgeries, and delivering optimal care in critical settings. Traditional methods for estimating SV, such as thermodilution, are invasive and unsuitable for routine diagnostics. Non-invasive techniques, although safer and more accessible, often lack the precision and user-friendliness needed for continuous bedside monitoring. We developed a modified method for SV estimation that combines a validated 1-D model of the systemic circulation with machine learning. Our approach replaces the traditional optimization process developed in our previous work, with a regression method, utilizing an in silico-generated dataset of various hemodynamic profiles to create a gradient boosting regression-enabled SV estimator. This dataset accurately mimics the dynamic characteristics of the 1-D model, allowing for precise SV predictions without resource-intensive parameter adjustments. We evaluated our method against SV values derived from the gold standard thermodilution method in 24 patients. The results demonstrated that our approach provides a satisfactory agreement between the predicted and reference data, with a MAE of 16 mL, a normalized RMSE of 21%, a bias of -9.2 mL, and limits of agreement (LoA) of [-47, 28] mL. A correlation coefficient of  = 0.7 ( < 0.05) was reported, with the predicted SV slightly underestimated (68 ± 23 mL) in comparison to the reference SV (77 ± 26 mL). The significant reduction in computational time of our method for SV assessment should make it suitable for real-time clinical applications.

摘要

每搏输出量(SV)是心血管功能的一项主要指标,可提供有关心脏功能和血流充足性的重要信息。准确测量每搏输出量对于评估心力衰竭患者、管理接受大手术的患者以及在危急情况下提供最佳护理尤为重要。传统的每搏输出量估计方法,如热稀释法,具有侵入性,不适用于常规诊断。非侵入性技术虽然更安全、更易操作,但往往缺乏连续床边监测所需的精度和用户友好性。我们开发了一种改进的每搏输出量估计方法,该方法将经过验证的体循环一维模型与机器学习相结合。我们的方法用回归方法取代了我们之前工作中开发的传统优化过程,利用计算机生成的各种血流动力学曲线数据集创建了一个支持梯度提升回归的每搏输出量估计器。该数据集准确模拟了一维模型的动态特性,无需进行资源密集型参数调整即可进行精确的每搏输出量预测。我们在24名患者中根据金标准热稀释法得出的每搏输出量值对我们的方法进行了评估。结果表明,我们的方法在预测数据和参考数据之间提供了令人满意的一致性,平均绝对误差为16毫升,归一化均方根误差为21%,偏差为 -9.2毫升,一致性界限(LoA)为[-47, 28]毫升。报告的相关系数为 = 0.7( < 0.05),与参考每搏输出量(77 ± 26毫升)相比,预测的每搏输出量略有低估(68 ± 23毫升)。我们的每搏输出量评估方法在计算时间上的显著减少使其适用于实时临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cca1/11959070/9f5228abcf1e/frai-08-1530453-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验