Pernot Pascal
Institut de Chimie Physique, UMR8000 CNRS, Université Paris-Saclay, 91405 Orsay, France.
J Chem Phys. 2022 Mar 21;156(11):114109. doi: 10.1063/5.0084302.
Uncertainty quantification (UQ) in computational chemistry (CC) is still in its infancy. Very few CC methods are designed to provide a confidence level on their predictions, and most users still rely improperly on the mean absolute error as an accuracy metric. The development of reliable UQ methods is essential, notably for CC to be used confidently in industrial processes. A review of the CC-UQ literature shows that there is no common standard procedure to report or validate prediction uncertainty. I consider here analysis tools using concepts (calibration and sharpness) developed in meteorology and machine learning for the validation of probabilistic forecasters. These tools are adapted to CC-UQ and applied to datasets of prediction uncertainties provided by composite methods, Bayesian ensembles methods, and machine learning and a posteriori statistical methods.
计算化学(CC)中的不确定性量化(UQ)仍处于起步阶段。很少有CC方法旨在为其预测提供置信水平,而且大多数用户仍然不恰当地依赖平均绝对误差作为准确性指标。可靠的UQ方法的开发至关重要,特别是对于要在工业过程中可靠使用的CC而言。对CC-UQ文献的综述表明,没有报告或验证预测不确定性的通用标准程序。我在此考虑使用气象学和机器学习中开发的概念(校准和清晰度)的分析工具来验证概率预报器。这些工具适用于CC-UQ,并应用于由复合方法、贝叶斯集成方法、机器学习和后验统计方法提供的预测不确定性数据集。