Institut de Chimie Physique, UMR8000 CNRS, Université Paris-Saclay, 91405 Orsay, France.
J Chem Phys. 2022 Oct 14;157(14):144103. doi: 10.1063/5.0109572.
Validation of prediction uncertainty (PU) is becoming an essential task for modern computational chemistry. Designed to quantify the reliability of predictions in meteorology, the calibration-sharpness (CS) framework is now widely used to optimize and validate uncertainty-aware machine learning (ML) methods. However, its application is not limited to ML and it can serve as a principled framework for any PU validation. The present article is intended as a step-by-step introduction to the concepts and techniques of PU validation in the CS framework, adapted to the specifics of computational chemistry. The presented methods range from elementary graphical checks to more sophisticated ones based on local calibration statistics. The concept of tightness, is introduced. The methods are illustrated on synthetic datasets and applied to uncertainty quantification data issued from the computational chemistry literature.
预测不确定性(PU)的验证对于现代计算化学来说已经成为一项必不可少的任务。校准锐度(CS)框架最初是为了量化气象预测的可靠性而设计的,现在已被广泛用于优化和验证不确定性感知机器学习(ML)方法。然而,它的应用并不仅限于 ML,它可以作为任何 PU 验证的原则性框架。本文旨在为计算化学的具体特点,提供一个逐步介绍 CS 框架中 PU 验证概念和技术的文章。文中介绍的方法从基本的图形检查到基于局部校准统计的更复杂方法都有涉及。还引入了紧密度的概念。这些方法在合成数据集上进行了说明,并应用于计算化学文献中发布的不确定性量化数据。