IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jul;69(7):2339-2351. doi: 10.1109/TUFFC.2022.3176926. Epub 2022 Jun 30.
Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit ( R=0.84 ) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration ( R=0.95 ) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration ( R=0.98 ) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples.
深度学习在无损评估(NDE)领域近年来受到了广泛关注,因为它具有提供人类水平数据分析的潜力。然而,对于其预测不确定性的量化研究却很少。不确定性量化(UQ)对于 NDE 检测的合格性和对其预测的信任度建立至关重要。因此,本文旨在展示如何在管道在线检测的裂纹尺寸测量的背景下,最好地实现深度学习的 UQ。使用卷积神经网络架构,通过两种现代 UQ 方法:深度集成和蒙特卡罗随机失活,对平面波成像(PWI)图像中的表面穿透缺陷进行尺寸测量。该网络使用混合有限元/射线模型模拟的表面穿透缺陷的 PWI 图像进行训练。成功的 UQ 通过校准和异常检测来判断,这是指模型误差是否与不确定性成比例,以及是否对训练域外的数据分配高不确定性。校准通过表面穿透裂纹的模拟和实验图像进行测试,而异常检测通过实验侧钻孔和模拟嵌入式裂纹进行测试。蒙特卡罗随机失活显示出较差的不确定性量化能力,在分布内和分布外数据之间几乎没有分离,并且实验均方根误差与不确定性之间的线性拟合较弱(R=0.84)。深度集成在校准(R=0.95)和异常检测方面都优于蒙特卡罗随机失活。在深度集成中添加谱归一化和残差连接,略微提高了校准的准确性(R=0.98),并显著提高了对分布外样本分配高不确定性的可靠性。