Suppr超能文献

深度学习在放射影像中的不确定性量化。

Quantifying Uncertainty in Deep Learning of Radiologic Images.

机构信息

From the Artificial Intelligence Laboratory (S.F., M.M., P.R., B.K., B.J.E.) and Division of Musculoskeletal Radiology (F.I.B., M.D.R.), Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905.

出版信息

Radiology. 2023 Aug;308(2):e222217. doi: 10.1148/radiol.222217.

Abstract

In recent years, deep learning (DL) has shown impressive performance in radiologic image analysis. However, for a DL model to be useful in a real-world setting, its confidence in a prediction must also be known. Each DL model's output has an estimated probability, and these estimated probabilities are not always reliable. Uncertainty represents the trustworthiness (validity) of estimated probabilities. The higher the uncertainty, the lower the validity. Uncertainty quantification (UQ) methods determine the uncertainty level of each prediction. Predictions made without UQ methods are generally not trustworthy. By implementing UQ in medical DL models, users can be alerted when a model does not have enough information to make a confident decision. Consequently, a medical expert could reevaluate the uncertain cases, which would eventually lead to gaining more trust when using a model. This review focuses on recent trends using UQ methods in DL radiologic image analysis within a conceptual framework. Also discussed in this review are potential applications, challenges, and future directions of UQ in DL radiologic image analysis.

摘要

近年来,深度学习(DL)在放射影像分析中表现出了令人印象深刻的性能。然而,为了使 DL 模型在实际环境中有用,还必须了解其对预测的置信度。每个 DL 模型的输出都有一个估计概率,而这些估计概率并不总是可靠的。不确定性表示估计概率的可信度(有效性)。不确定性越高,有效性越低。不确定性量化(UQ)方法确定每个预测的不确定性水平。没有 UQ 方法的预测通常是不可信的。通过在医疗 DL 模型中实施 UQ,当模型没有足够的信息做出有信心的决策时,用户可以收到警报。因此,医学专家可以重新评估不确定的病例,这最终将导致在使用模型时获得更多的信任。本综述重点介绍了在概念框架内使用 UQ 方法在 DL 放射影像分析中的最新趋势。本综述还讨论了 UQ 在 DL 放射影像分析中的潜在应用、挑战和未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验