Papadopoulos Alexis, Kyriakou Ioanna, Matsuya Yusuke, Cortés-Giraldo Miguel Antonio, Galocha-Oliva Miguel, Plante Ianik, Stewart Robert D, Tran Ngoc Hoang, Li Weibo, Daglis Ioannis A, Santin Giovanni, Nieminen Petteri, Incerti Sebastien, Emfietzoglou Dimitris
Medical Physics Laboratory, Department of Medicine, University of Ioannina, 45110, Ioannina, Greece.
Faculty of Health Sciences, Hokkaido University, Kita-12 Nishi-5, Kita-Ku, Sapporo,, Hokkaido, 060-0812, Japan.
Radiat Environ Biophys. 2025 Mar;64(1):117-135. doi: 10.1007/s00411-025-01110-w. Epub 2025 Feb 10.
Radiation quality for determining biological effects is commonly linked to the microdosimetric quantity lineal energy ( ) and to the dose-mean lineal energy ( ). Calculations of are typically performed by specialised Monte Carlo track-structure (MCTS) codes, which can be time-intensive. Thus, microdosimetry-based analytic models are potentially useful for practical calculations. Analytic model calculations of proton and radiation protection quality factor ( ) values in sub-micron liquid water spheres (diameter 10-1000 nm) over a broad energy range (1 MeV-1 GeV) are compared against MCTS simulations by PHITS, RITRACKS, and Geant4-DNA. Additionally, an improved analytic microdosimetry model is proposed. The original analytic model of Xapsos is refined and model parameters are updated based on Geant4-DNA physics model. Direct proton energy deposition is described by an alternative energy-loss straggling distribution and the contribution of secondary electrons is calculated using the dielectric formulation of the relativistic Born approximation. MCTS simulations of proton values using the latest versions of the PHITS, RITRACKS, and Geant4-DNA are reported along with the Monte Carlo Damage Simulation (MCDS) algorithm. The datasets are then used within the Theory of Dual Radiation Action (TDRA) to illustrate variations in with proton energy. By a careful selection of parameters, overall differences at the ~ 10% level between the proposed analytic model and the MCTS codes can be attained, significantly improving upon existing models. MCDS estimates of are generally much lower than estimates from MCTS simulations. The differences of among the examined methods are somewhat smaller than those of . Still, estimates of proton values by the present model are in better agreement with MCTS-based estimates than the existing analytic models. An improved microdosimetry-based analytic model is presented for calculating proton values over a broad range of proton energies (1 MeV-1 GeV) and target sizes (10-1000 nm) in very good agreement with state-of-the-art MCTS simulations. It is envisioned that the proposed model might be used as an alternative to CPU-intensive MCTS simulations and advance practical microdosimetry and quality factor calculations in medical, accelerator, and space radiation applications.
用于确定生物效应的辐射品质通常与微观剂量学量线能量( )以及剂量平均线能量( )相关联。 的计算通常由专门的蒙特卡罗径迹结构(MCTS)代码执行,这可能耗时较长。因此,基于微观剂量学的解析模型对于实际计算可能很有用。将在宽能量范围(1 MeV - 1 GeV)内,对亚微米液态水球(直径10 - 1000 nm)中质子 和辐射防护品质因数( )值的解析模型计算结果,与PHITS、RITRACKS和Geant4-DNA的MCTS模拟结果进行比较。此外,还提出了一种改进的解析微观剂量学模型。对Xapsos的原始解析模型进行了改进,并基于Geant4-DNA物理模型更新了模型参数。通过替代的能量损失离散分布来描述质子的直接能量沉积,并使用相对论玻恩近似的介电公式计算二次电子的贡献。报告了使用最新版本的PHITS、RITRACKS和Geant4-DNA对质子 值的MCTS模拟结果以及蒙特卡罗损伤模拟(MCDS)算法。然后,将 数据集用于双辐射作用理论(TDRA)中,以说明 随质子能量的变化。通过仔细选择参数,所提出的解析模型与MCTS代码之间在约10%的水平上可实现总体差异,显著优于现有模型。MCDS对 的估计通常远低于MCTS模拟的估计。所研究方法之间 的差异比 的差异略小。尽管如此,与现有解析模型相比,本模型对质子 值的估计与基于MCTS的估计更一致。提出了一种改进的基于微观剂量学的解析模型,用于在很宽的质子能量范围(1 MeV - 1 GeV)和靶尺寸(10 - 1000 nm)内计算质子 值,与最先进的MCTS模拟结果非常吻合。预计所提出的模型可作为CPU密集型MCTS模拟的替代方法,并推动医学、加速器和空间辐射应用中的实际微观剂量学和品质因数计算。