Suppr超能文献

Hawkes Processes With Stochastic Exogenous Effects for Continuous-Time Interaction Modelling.

作者信息

Fan Xuhui, Li Yaqiong, Chen Ling, Li Bin, Sisson Scott A

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1848-1861. doi: 10.1109/TPAMI.2022.3161649. Epub 2023 Jan 6.

Abstract

Continuous-time interaction data is usually generated under time-evolving environment. Hawkes processes (HP) are commonly used mechanisms for the analysis of such data. However, typical model implementations (such as e.g., stochastic block models) assume that the exogenous (background) interaction rate is constant, and so they are limited in their ability to adequately describe any complex time-evolution in the background rate of a process. In this paper, we introduce a stochastic exogenous rate Hawkes process (SE-HP) which is able to learn time variations in the exogenous rate. The model affiliates each node with a piecewise-constant membership distribution with an unknown number of changepoint locations, and allows these distributions to be related to the membership distributions of interacting nodes. The time-varying background rate function is derived through combinations of these membership functions. We introduce a stochastic gradient MCMC algorithm for efficient, scalable inference. The performance of the SE-HP is explored on real world, continuous-time interaction datasets, where we demonstrate that the SE-HP strongly outperforms comparable state-of-the-art methods.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验