Suppr超能文献

解析与不同低磷酸酯酶症表型相关的碱性磷酸酶中的突变变构效应:综合计算研究。

Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation.

机构信息

Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.

Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai, China.

出版信息

PLoS Comput Biol. 2022 Mar 23;18(3):e1010009. doi: 10.1371/journal.pcbi.1010009. eCollection 2022 Mar.

Abstract

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.

摘要

低磷酸酯酶症(HPP)是一种罕见的遗传性疾病,其特征为骨矿化缺陷,临床表现高度可变。该疾病是由于编码组织非特异性碱性磷酸酶(TNSALP)的 ALPL 基因的各种功能丧失突变引起的。在这项工作中,提出了一种数据驱动和基于生物物理的方法,用于大规模分析从非致病性到严重 HPP 的 ALPL 突变。通过使用包括序列-结构分析、网络建模、弹性网络模型和原子模拟在内的协同方法的流水线,我们对 ALPL 突变的变构特征和对蛋白质动力学和功能的影响进行了表征。对计算出的 ALPL 突变的分子特征进行的统计分析表明,在对照、轻度和严重 HPP 表型之间存在显著差异。将分子动力学模拟与蛋白质结构网络分析相结合,用于分析单残基变化对 TNSALP 二聚体构象动力学的影响,开发的机器学习模型表明拓扑网络参数可以作为严重突变的可靠指标。结果表明,疾病相关突变的严重程度通常与突变诱导的蛋白质变构通讯的调制有关。该研究表明,与轻度和更严重 HPP 相关的 ALPL 突变对蛋白质稳定性和长程网络通讯会产生明显不同的影响。通过将疾病表型与动态和变构分子特征联系起来,所提出的综合计算方法能够对 ALPL 突变的变构效应进行表征和量化,并阐明变构作用在 HPP 发病机制中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/496a/8979438/98fdf4d7779c/pcbi.1010009.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验